
PROGRAMMING MANY-CORE SYSTEMS WITH GRAMPS

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Jeremy Sugerman

August 2010

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
AUG 2010 2. REPORT TYPE

3. DATES COVERED
 00-00-2010 to 00-00-2010

4. TITLE AND SUBTITLE
Programming Many-Core Systems with Gramps

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Stanford University,Stanford,CA,94305

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The era of obtaining increased performance via faster single cores and optimized single-thread programs is
over. Instead, a major factor in new processors? performance comes from parallelism: increasing numbers
of cores per processor and threads per core. At the same time, highly parallel GPU cores, initially
developed for shading are increasingly being adopted to offload and augment conventional CPUs, and
vendors are already discussing chips that combine CPU and GPU cores. These trends are leading towards
heterogeneous, commodity, many-core platforms with excellent potential performance, but also
(not-so-excellent) significant actual complexity. In both research and industry run-time systems,
domain-specific languages, and more generally, parallel programming models, have become the tools to
realize this performance and contain this complexity. In this dissertation, we present GRAMPS, a
programming model for these heterogeneous commodity, many-core systems that expresses programs as
graphs of thread- and data-parallel stages communicating via queues. We validate its viability with respect
to four design goals?broad application scope, multi-platform applicability performance, and
tunability?and demonstrate its effectiveness at minimizing the memory consumed by the queues. Through
three case studies, we show applications for GRAMPS from domains including interactive graphics,
MapReduce, physical simulation, and image processing and describe GRAMPS runtimes for three
many-core platforms: two simulated future rendering platforms and one current multi-core x86 machine.
Our GRAMPS runtimes efficiently recognize and exploit the available parallelism while containing the
footprint/ buffering required by the queues. Finally, we discuss how GRAMPS?s scheduling compares to
three archetypal representations of popular programming models task-stealing scheduling, breadth-first
scheduling, and static scheduling. We find that when structure is present, GRAMPS?s adaptive, dynamic
scheduling provides good load-balance with low overhead and its application graph gives it multiple
advantages for managing the run-time depths of the queues and their memory footprint.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

104

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

 http://creativecommons.org/licenses/by-nc/3.0/us/

This dissertation is online at: http://purl.stanford.edu/cd589ky4265

© 2010 by Jeremy Sugerman. All Rights Reserved.

Re-distributed by Stanford University under license with the author.

This work is licensed under a Creative Commons Attribution-
Noncommercial 3.0 United States License.

ii

http://creativecommons.org/licenses/by-nc/3.0/us/
http://creativecommons.org/licenses/by-nc/3.0/us/
http://purl.stanford.edu/cd589ky4265

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Patrick Hanrahan, Primary Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Mendel Rosenblum

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Kurt Akeley

Approved for the Stanford University Committee on Graduate Studies.

Patricia J. Gumport, Vice Provost Graduate Education

This signature page was generated electronically upon submission of this dissertation in
electronic format. An original signed hard copy of the signature page is on file in
University Archives.

iii

iv

Abstract

The era of obtaining increased performance via faster single cores and optimized

single-thread programs is over. Instead, a major factor in new processors’ perfor-

mance comes from parallelism: increasing numbers of cores per processor and threads

per core. At the same time, highly parallel GPU cores, initially developed for shad-

ing, are increasingly being adopted to offload and augment conventional CPUs, and

vendors are already discussing chips that combine CPU and GPU cores. These trends

are leading towards heterogeneous, commodity, many-core platforms with excellent

potential performance, but also (not-so-excellent) significant actual complexity. In

both research and industry run-time systems, domain-specific languages, and more

generally, parallel programming models, have become the tools to realize this perfor-

mance and contain this complexity.

In this dissertation, we present GRAMPS, a programming model for these het-

erogeneous, commodity, many-core systems that expresses programs as graphs of

thread- and data-parallel stages communicating via queues. We validate its viability

with respect to four design goals—broad application scope, multi-platform applica-

bility, performance, and tunability—and demonstrate its effectiveness at minimizing

the memory consumed by the queues.

Through three case studies, we show applications for GRAMPS from domains in-

cluding interactive graphics, MapReduce, physical simulation, and image processing,

and describe GRAMPS runtimes for three many-core platforms: two simulated future

rendering platforms and one current multi-core x86 machine. Our GRAMPS runtimes

v

efficiently recognize and exploit the available parallelism while containing the foot-

print/buffering required by the queues. Finally, we discuss how GRAMPS’s schedul-

ing compares to three archetypal representations of popular programming models:

task-stealing scheduling, breadth-first scheduling, and static scheduling. We find that

when structure is present, GRAMPS’s adaptive, dynamic scheduling provides good

load-balance with low overhead and its application graph gives it multiple advantages

for managing the run-time depths of the queues and their memory footprint.

vi

Acknowledgements

My parents, Sharon and Art Sugerman, were enthusiastic and supportive when I

ended more than five years of working full-time to seek a Ph.D. Nearly seven years

later, they are still supportive, though in their own way each has made it clear that

while they respected my disinclination to hurry, one is expected to graduate at some

point. My advisor has made a similar point.

Speaking of which, I am very glad to have had Pat Hanrahan as my advisor. We

have not always had an easy time understanding one another—despite both being

fluent in Technical-Person English, our personal dialects are all but disjoint in some

places—but we generally worked our way to common ground and I learned far more

from the exposure to a mind and character I respected that was so different from

my own. He indulged and abetted my masquerading as a graphics person, and even

sort-of becoming one.

I am also grateful to Kurt Akeley and Mendel Rosenblum for serving on my

reading committee and being excellent resources and role models. Kurt is an amazing

engineer. It is a pleasure and an education to watch him digest a topic, talk, or paper

and hear the content and phrasing of the questions he asks in the process. I owe

Mendel an enormous debt of gratitude for many, many things: all his signatures

my first pass at Stanford; VMware, plus his friendship and teaching there; support

applying to grad school; and all the conversations and advice throughout school, even

though we barely talked about my actual research.

Eric Darve and Christos Kozyrakis rounded out my orals committee. Eric un-

hesitatingly agreed to be my chair despite our only casual interactions. Christos not

only welcomed my crashing of his group, but requested it, promoted GRAMPS, and

vii

pushed his students at me as collaborators. Additionally, John Gerth and a succession

of capable admins in Gates 368—Heather, Ada, and Melissa—contributed tirelessly

to making the lab, the infrastructure, and the paperwork all ’just work’ when I needed

anything.

I would also like to express appreciation for all the other students with whom

I’ve had a chance to work. Daniel, Kayvon, Mike, Tim, and I all started together,

worked with Ian on Brook, and with each other on various things. Kayvon and Tim,

in particular, tolerated me many times and taught me a great deal. Solomon sneaked

in a few years later, but was not too shabby, either. As mentioned, I also worked

students of Christos: another Daniel, David, and Richard. They contributed heavily

to work whose relevance to their own graduation was hazy and endured my cracks

about computer architecture in academia with reasonable cheer.

Over most of the past seven years, Stanford was not my sole day job. Despite the

fact that school consumed the lion’s share of my attention, I was able to stay involved

with VMware. Many people, but especially Paul Chan and later Steve Herrod, helped

preserve a place for me and offer a refuge for my sanity when academic life got

too. . . academic. In addition, the Stanford Graphics Lab enjoys privileged access to

smart, capable, people in industry who were a huge help in my research and more

generally my curiosity about neat technology. I am grateful to people from (at least)

NVIDIA, Intel, and AMD. Nick Triantos, John Nickolls, Ian Buck, Doug Carmean,

Eric Sprangle, and Danny Lynch all gave me significant amounts of their time at

various points.

Finally, I am of course grateful to my funding agencies. Stanford awarded me

an incredibly generous Rambus Stanford Graduate Fellowship. I received additional

support under the general aegis of the Pervasive Parallelism Lab and the Department

of the Army Research (grant W911NF-07-2-0027), as well as hardware donations from

Intel, NVIDIA, and AMD.

To all of these people, as well as everyone whom I asked questions or who asked

me questions: thank you. You made my time in graduate school a rare privilege.

viii

Contents

Abstract v

Acknowledgements vii

1 Introduction 1

2 Parallel Programming Models 5

2.1 Domain Specific Programming Models 5

2.1.1 Real-Time Graphics Pipelines 5

2.2 General Purpose Programming Models 6

2.2.1 Task-Stealing . 7

2.2.2 Breadth-First . 8

2.2.3 Static . 9

2.3 Conclusion . 10

3 The GRAMPS Programming Model 11

3.1 GRAMPS Design . 11

3.2 A GRAMPS Example . 12

3.3 Execution Graphs . 14

3.4 Queues . 15

3.4.1 Packets . 16

3.4.2 Queue Sets . 16

3.5 Stages . 18

3.5.1 Thread Stages . 19

ix

3.5.2 Fixed-Function Stages . 20

3.5.3 Shader Stages . 20

3.6 Common Design Idioms . 21

4 Future Rendering Architectures 23

4.1 Introduction . 23

4.2 Background and Related Work . 25

4.2.1 GPUs . 25

4.2.2 Graphics on Stream Processors 26

4.3 Application Scope . 27

4.3.1 Direct3D . 27

4.3.2 Ray Tracer . 28

4.3.3 Extended Direct3D . 29

4.4 Multi-platform . 30

4.4.1 Hardware Simulator . 30

4.4.2 GRAMPS Runtimes . 32

4.5 Performance . 34

4.5.1 Scheduling . 34

4.5.2 Evaluation . 36

4.6 Tunability . 38

4.6.1 Diagnosis . 38

4.6.2 Optimization . 41

4.7 Conclusion . 42

5 Current General-Purpose Multi-cores 45

5.1 Introduction . 45

5.2 Application Scope . 46

5.3 Multi-platform (Implementation) . 50

5.3.1 Data Queues . 50

5.3.2 Task Queues . 51

5.3.3 Termination . 52

5.4 Performance . 53

x

5.4.1 Scheduling . 53

5.4.2 Evaluation . 54

5.5 Tunability . 57

5.6 Conclusion . 58

6 Comparing Schedulers 59

6.1 Introduction . 59

6.2 Representing other Programming Models with GRAMPS 60

6.3 Evaluation . 63

6.3.1 Execution Time . 64

6.3.2 Footprint . 66

6.3.3 Static . 68

6.4 Conclusions . 69

7 Discussion 71

7.1 Contributions and Take-aways . 71

7.2 Final Thoughts . 73

A Sample GRAMPS Code 75

A.1 Application Graph Setup . 75

A.1.1 C++ Setup . 77

A.1.2 Grampsh Setup . 79

A.2 Stages . 80

A.2.1 Generate-Keyed . 81

A.2.2 Reduce-Huge-Reserve . 81

Bibliography 83

xi

xii

List of Tables

2.1 Summary of different general purpose programming models. 6

4.1 Test scenes . 36

4.2 Simulation results . 38

5.1 Application characteristics . 47

A.1 The GRAMPS application graph API 76

A.2 GRAMPS APIs for Thread and Shader stages 80

xiii

xiv

List of Figures

3.1 Legend: the design elements of a GRAMPS program. 12

3.2 Hypothetical GRAMPS cookie dough application 13

3.3 Using a queue set . 17

4.1 Our Direct3D-based pipeline including optional extension. 26

4.2 Our ray tracing application graph . 27

4.3 The CPU-like and GPU-like simulator configurations. 32

4.4 The static stage priorities for the ray tracing application graph. . . . 34

4.5 Grampsviz ray tracing the Teapot scene. 39

4.6 Grampsviz rasterizing the Courtyard scene. 40

4.7 Initial and revised versions for the bottom of our Direct3D pipeline. . 41

5.1 GRAMPS graphs for MapReduce, spheres, fm, mergesort, and

srad. 48

5.2 Our two quad-core HyperThreaded test system. 54

5.3 Application speedup on an 8-core, 16-thread system. 55

5.4 Execution time profile (8 cores, 16-threads). 56

6.1 Grampsviz output for our four schedulers. 61

6.2 Execution time profile (8 cores, 16-threads) of applications running the

GRAMPS, Task-Stealing, and Breadth-First schedulers (left to right). 64

6.3 Execution time by task size (GRAMPS versus tasks) 65

6.4 Relative data queue depths for GRAMPS, Task-Stealing, and Breadth-

first . 66

xv

6.5 Relative footprints of GRAMPS and Task-Stealing 67

6.6 Static scheduling results . 68

A.1 Application graph for set-reduce-keyed. 76

xvi

Chapter 1

Introduction

Commodity computing and computers are in the midst of transition: the era of the

single fast core is over. Multi-core CPUs are now prevalent and core counts are

increasing in accordance with Moore’s Law. Five years after the first dual-core x86

chips appeared, eight and twelve-core versions have been released. The rapid rise

of independent cores per chip has made software parallelism critical to performance:

scale-up, maximizing a core’s utilization, was once paramount, but it is now rivaled

or surpassed by scale-out, maximizing incremental performance as more cores are

employed. Quite simply, with eight or twelve cores, realizing 80% performance from

all of them dwarfs realizing 95% performance from only one.

Over the same period, the competing design pressures of power consumption and

performance have increasingly promoted diverse heterogeneous platforms: different

mixtures of different kinds of ‘cores’. Programmable GPU cores originally designed for

shading are now used to accelerate general purpose (i.e., non-graphics) applications

by more than order of magnitude relative to conventional CPU cores in the same

cost/design envelope. CPU designers are experimenting with their own trade-offs in

core design. The Cell processor and Intel’s Larrabee (now Knights) architecture both

offer high computational abilities by using many copies of a simple core design in

place of fewer copies of a state-of-the-art out-of-order superscalar processor [35, 40].

Additionally, the fact of multiple cores on the same chip, as opposed to multiple

chips, has the potential to facilitate heterogeneity: so long as one core on the chip

1

2 CHAPTER 1. INTRODUCTION

can bootstrap the machine, the others can be more specialized. This has CPU vendors

pursuing future chips that contain both conventional processors and GPU cores [1].

These impending heterogeneous, many-core, commodity machines offer enormous

amounts of potential computational resources. Actually exploiting that potential,

however, is a nontrivial challenge. Both parallelism and, especially, heterogeneous

parallelism are major challenges for software development. Tackling them has created

renewed interest in both academia and industry for developing high-level programming

models, such as OpenCL [23], Cilk [15], and OpenMP [13]. High-level programming

models provide two major advantages over low-level interfaces such as threads and

locks. First, they provide constructs that make it easier for programmers to express

parallelism. Second, their runtimes and schedulers manage concurrency and com-

munication, simplifying these burdens for the programmer. This thesis introduces

GRAMPS, a new high-level programming model for heterogeneous, parallel systems.

High-level programming models achieve their advantages by placing the application-

programming model boundary closer to application constructs than hardware inter-

faces. This gives them more insight into application structure, patterns, and se-

mantics. In exchange, they must make/impose assumptions about the chief types of

applications and developers that they target.

Our application focus stems from three beliefs: interesting applications have irreg-

ularity; large bundles of coherent work are efficient; and the producer-consumer/pipeline

idiom is important. These beliefs are rooted in our experiences, positive and negative,

with graphics workloads and wrestling with graphics hardware for GPGPU purposes,

but also draw upon our exposure to streaming architectures (and traditional parallel

programming for CPUs). Irregularity takes many forms: different input elements

may take different lengths of time to process, generate different numbers of outputs

or different communication patterns, etc. At the same time, coherency enables amor-

tization: it is more efficient to make one scheduling decision for one thousand items

than one for each; to use SIMD execution to process a batch of items at a time; or to

group work by access pattern for memory system locality. Finally, many workloads

generate significant quantities of temporary/intermediate data during computation

3

that can be consumed incrementally as it appears. Not only does this allow paral-

lelism of production and consumption, it has a powerful effect on locality: the data

can be processed without the bandwidth and storage costs of spilling it to buffer

in the higher levels of the memory hierarchy. We will (re)build program coherence

dynamically by having the application expose related work to GRAMPS, which will

aggregate it.

Our developer focus is systems-savvy developers: programmers who are well in-

formed about their hardware and the best practices for it, but who dislike rote and

prefer to use and build tools that systematize those idioms instead. A particular char-

acteristic of this audience that influences our design in multiple places is a preference

for the option of trading conservative guarantees for expressiveness. That is, a few

sharp edges, if well-identified, optional, and powerful when used appropriately, are

preferable to philosophically disallowing them for safety.

This thesis makes three main contributions:

1. The definition and design of GRAMPS (Chapter 3): programs as graphs of

independent stages connected via queues; queues with application specified ca-

pacities and packet (work) sizes; and stages with can support no, limited, or

total automatic intra-stage parallelism with static, conditional, or in-place (re-

duction) outputs.

2. Validation of GRAMPS with respect to four design goals (Chapters 4, 5, 6):

• Broad application scope: It should be possible to express a wide range

of algorithms in GRAMPS and more convenient and effective than roll-

your-own approaches.

• Multi-platform applicability: GRAMPS should suit a wide range of

heterogeneous, many-core, commodity configurations.

• Performance: Applications built in GRAMPS should give up little per-

formance over native implementations, specifically in terms of scale-out

parallelism and buffering of intermediate data.

4 CHAPTER 1. INTRODUCTION

• Tunability: Developers should be able to become experts in GRAMPS,

i.e., be able to explain the performance of their applications and be able

to tune (optimize) them by adapting their use of the programming model.

3. Demonstration that GRAMPS performs better than current general-purpose

programming models, with respect to the important metric of memory allocated

to queues, without giving up performance (Chapter 6).

Tunability perhaps seems incongruous to have as such a prominent design goal.

We believe it is absolutely critical for our audience: an un-tunable system is a system

which can have no expert users (by definition) and heterogeneous, parallel program-

ming is too complex to fully automate. Skilled developers will always know more

about their workloads than any programming model can capture or infer. They will

expect to have to optimize and refine their programs to employ that knowledge and

will have little use for any tool that does not embrace that process.

Boiled down, these contributions amount to two things: (i) GRAMPS is a viable

programming model for many applications on current and likely future machines;

(ii) GRAMPS can be implemented to achieve good parallel scalability while keeping

a low queue (memory) footprint. After a background discussion of current parallel

programming models (Chapter 2) and a detailed overview of GRAMPS (Chapter 3),

these assertions are validated by three case studies: GRAMPS for simulated future

graphics architectures (Chapter 4), GRAMPS for current multi-core x86 machines

(Chapter 5), and a horizontal comparison to schedulers based on alternative pro-

gramming models (Chapter 6). We end with some overall discussion (Chapter 7) and

provide a sample GRAMPS application as an appendix (Appendix A).

Chapter 2

Parallel Programming Models

This thesis proposes GRAMPS as a new programing model for parallel applications,

but there are many existing ones. This chapter surveys the alternatives and identifies

their defining properties.

2.1 Domain Specific Programming Models

Programming models are able to simplify development and accelerate and/or manage

applications by imposing and systematizing assumptions about their behavior. One

common and effective way to do this is to restrict the supported application domain:

this enables data types, synchronization primitives, and scheduling to be tailored to

application semantics. Domain specific programming models are widespread, and

range from long-lasting formalized models such as SQL for databases [45] to more

one-off ad hoc models such as the plugin interfaces for web browsers (e.g., [28]).

2.1.1 Real-Time Graphics Pipelines

The most relevant examples to GRAMPS are the rendering-specific programming

models of OpenGL and Direct3D [39, 5]. These two, which are very close to each

other, provide developers a simple, vendor-agnostic interface for describing real-time

graphics computations. More importantly, the pipeline and programmable shading

5

6 CHAPTER 2. PARALLEL PROGRAMMING MODELS

Model
Supports Producer- Hierarchical Adaptive

Examples
Shader Consumer Work Scheduling

Task-Stealing No No No Yes Cilk, TBB, OpenMP
Breadth-First Yes No Yes No CUDA, OpenCL

Static Yes Yes Yes No StreamIt, Imagine

GRAMPS Yes Yes Yes Yes –

Table 2.1: Summary of different general purpose programming models.

abstractions exported by these interfaces are generally backed by highly-tuned GPU-

based implementations. By using rendering-specific abstractions (such as vertices,

fragments, and pixels) OpenGL/Direct3D maintains high performance without in-

troducing difficult concepts such as parallelism, threads, asynchronous processing, or

synchronization. The drawback of these design decisions is limited flexibility. Ap-

plications must be restructured to conform to the pipeline that OpenGL/Direct3D

present. A fixed pipeline makes it difficult to implement many advanced render-

ing techniques efficiently. Extending the graphics pipeline with new domain-specific

stages or data flows to provide new functionality has been the subject of many pro-

posals, for example, [5, 18, 4], but their availability is gated by their endorsement,

adoption, and release by the OpenGL/Direct3D model owners. In the first case

study, we will look closely at using GRAMPS to implement a graphics pipeline more

flexibly. In fact, one of the early motivations that led to GRAMPS was to enable

“non-owners” of OpenGL/Direct3D to make performance-efficient adjustments to the

graphics pipeline.

2.2 General Purpose Programming Models

Other types of parallel programming models aim to be general purpose. They make

simplifying assumptions/gain workload insight with higher-level operations and data-

structures than raw kernel threads and locks, but avoid explicit expectations coupled

to a particular application domain.

There are a great many general purpose parallel programming models, but we be-

lieve they mostly fit into three broad categories—Task-Stealing, Breadth-First, and

2.2. GENERAL PURPOSE PROGRAMMING MODELS 7

Static—which we name in terms of their scheduling policies and for which we can

identify canonical traits. While we will discuss particulars of specific implementa-

tions below, they have significant biases that complicate direct comparisons (due to

unevenly tuned runtimes, different toolchains, varying benchmark implementations,

etc.). Our primary objective is to distill the key scheduling policies, which we will use

to compare them with GRAMPS and each other in Chapter 6.

Table 2.1 summarizes the three canonical models (and GRAMPS) according to

four criteria:

• Support for shaders: The model provides a built-in construct for data-parallel

kernels, which are automatically parallelized.

• Support for producer-consumer: The runtime is aware of data produced as

intermediate results (i.e., created and consumed during execution) and attempts

to exploit this awareness during scheduling.

• Hierarchical work: The model allows work to be expressed at different gran-

ularities rather than all being expressed at the finest granularity.

• Adaptive scheduling: The scheduler makes use of information available at

runtime, and can choose from all available work to execute.

2.2.1 Task-Stealing

Task-Stealing models are characterized by an underlying pool of threads that execute

work which the application explicitly divides into independent tasks. Each thread has

a queue of ready tasks, to which it enqueues and dequeues work. For load balance,

when a thread’s local queue is empty, it tries to steal tasks from other threads. Task-

Stealing is a common low-level scheduling technique implemented by several runtimes,

such as Cilk [15], TBB [21] and OpenMP [13].

Task-Stealing runtimes often focus on low-overhead task creation and execution in

order to exploit fine-grain parallelism [3]. As a result, they tend to avoid any features

that add per-task overhead, such as priorities, dependencies, or hierarchies. Rather,

8 CHAPTER 2. PARALLEL PROGRAMMING MODELS

they operate on ‘task soup’, a sea of equivalent-looking tasks. Since Task-Stealing

systems offer minimal flow control or synchronization builtins, applications often roll

their own locks and other primitives, which are then opaque to the programming

model.

Task-Stealing models do not aggressively try to minimize memory footprint, but

some provide guarantees that memory footprint grows at most linearly with the

number of threads (e.g., by restricting which tasks to steal and using LIFO task

queues [15]).

Thus, in terms of the criteria of Table 2.1, Task-Stealing only exhibits adaptive

scheduling. Models can, and are designed to, schedule whatever tasks they believe

enhance load-balance. The tasks, however, are essentially unstructured: all are equal

in the eyes of the scheduler without any notion of grouping for hierarchy or recognizing

producer-consumer behavior and without any support for automatic data-parallelism.

2.2.2 Breadth-First

Breadth-First models are fundamentally about simple data-parallelism. They ex-

press programs as a sequence (DAG or pipeline) of implicitly data-parallel kernels

and run one kernel at a time, with the runtime automatically instancing and man-

aging enough independent copies of the kernel to utilize the available hardware re-

sources. Data-parallel algorithms initially arose in the context of massively parallel

supercomputers, such as the Connection Machine [19], and were exemplified by pro-

gramming models/languages such as C* [38]. The archetypal current Breadth-First

models are those arising from GPGPU programming (using GPUs for non-graphics

general purposes), such as OpenCL and CUDA [23, 31].

Executing one kernel at a time with barriers between stages/passes is straight-

forward to implement (and understand), and highly effective for regular, divide-and-

conquer, algorithms. Breadth-First’s two weaknesses, though, are footprint and load-

balance in the presence of irregularity. Scheduling breadth-first is the opposite of

producer-consumer: the entire output of one kernel must be accumulated and buffered

before any can be consumed by the next and no pipeline parallelism can be used to

2.2. GENERAL PURPOSE PROGRAMMING MODELS 9

overlap stages that cannot by themselves fill a machine.

Referring back to Table 2.1, Breadth-First models excel at shader support and

include some hierarchical notion of execution: processing is expressed in terms of

kernels launched on large input data sets with the fine-grained divisions onto hard-

ware resources handled internally. As mentioned above, though, producer-consumer

communication between kernels is completely impossible. And scheduling, while po-

tentially somewhat dynamic in the dispatching of intra-kernel threads/instances, is

not adaptive: no matter how plentiful the work available for other kernels is, only

one kernel runs at a time.

2.2.3 Static

Static models are very similar to GRAMPS, only scheduled according to offline/up-

front transformations and decisions rather than dynamically. Applications are ex-

pressed graphs of stages that explicitly interact via data streams. The programming

model automatically instances them and attempts a layout that exploits producer-

consumer locality. They trade the adaptability of dynamic scheduling for up-front

transformations to maximize run-time computational density. The (offline) sched-

uler needs full prior knowledge of the execution requirements of each stage and their

cross-stage communication patterns, which are obtained from the compiler, a pro-

filer, and/or user annotations. These models are typified by streaming systems, such

as StreamIt [43] and architectures like Imagine [22], Merrimac [11], and RAW [44].

Unsurprisingly, their biggest weakness is handling irregularity/input-dependent work-

loads where execution behavior, communication patterns, or both, are impossible to

approximate or know in advance.

Static models fulfill three of the four criteria used in Table 2.1: all but adaptive

scheduling. From an application development perspective, they extend Breadth-First

to add a full execution graph and allow overlapping of stages (i.e., kernels), and

thus capture producer-consumer interactions. From an implementation perspective,

however, Static models are entirely distinct: as its name implies, the entire execution

order is predetermined before execution begins, the opposite of adaptivity.

10 CHAPTER 2. PARALLEL PROGRAMMING MODELS

2.3 Conclusion

The primary advantages programming models offer come from the unifying/simplifying

assumptions they make in the constructs they expose and the resulting leverage that

gives them for implementation and scheduling. Making highly domain-specific as-

sumptions has allowed very efficient, high performance implementations of real-time

graphics pipelines on GPUs. At the same time, encoding application-domain traits

naturally interferes with extending or modifying the range of applications well-suited

to a model. In the next chapter, the first case study, we will look at using GRAMPS

as an intermediate layer upon which the real-time graphics pipeline can be an appli-

cation and use this indirection to both extend it and replace it completely.

There is also a diverse array of general purpose programming models. Among

those relevant to our focus, we feel they group roughly into three canonical representa-

tives: Task-Stealing, Breadth-First, and Static. Task-Stealing focuses on lightweight

tasks and adaptive scheduling, Breadth-First focuses on data-parallelism, and Static

focuses on regular/predictable execution graphs. Each fulfills a different subset of the

key criteria we see for GRAMPS: support for shaders; support for producer-consumer;

constructs for hierarchical work; and adaptive scheduling (Table 2.1). In Chapter 6,

the third case study, we will compare GRAMPS and all three alternatives to show

the impact of each criterion.

Chapter 3

The GRAMPS Programming

Model

This chapter describes the GRAMPS programming model and its abstractions. It

does not include execution details, such as scheduling algorithms, which are traits of

particular implementations of the programming model. Those are described in the

case studies in the subsequent chapters. Most of the programming model description

has been published previously in [41] and/or [42].

3.1 GRAMPS Design

GRAMPS is a General Runtime/Architecture for Many-core Parallel Systems. It

defines a programming model for expressing pipeline and computation-graph style

parallel applications. It exposes a small, high-level set of primitives designed to be

simple to use, to exhibit properties necessary for high-throughput processing, and

to permit efficient implementations. We intend for GRAMPS implementations to

involve various combinations of software and underlying hardware support, similar

for example, to how OpenGL permits flexibility in an implementation’s division of

driver and GPU hardware responsibilities. However, unlike OpenGL, we envision

GRAMPS as being without ties to a specific application domain. Rather, it provides

a substrate upon which domain-specific models can be built.

11

12 CHAPTER 3. THE GRAMPS PROGRAMMING MODEL

queue

push

queue

In−Place

Shader

Thread

Stage

Instanced

Thread

Shader

Stage
Custom

Hardware

queue

set

barrier

queue

Figure 3.1: Legend: the design elements of a GRAMPS program.

GRAMPS is organized around the basic concept of application-defined indepen-

dent computation stages executing in parallel and communicating asynchronously

via queues. This relatively simple producer-consumer idiom is fundamental across a

broad range of throughput applications. In keeping with our goal of domain indepen-

dence, GRAMPS is designed to be decoupled from application-specific semantics such

as data types and layouts and internal stage execution. It also extends these basic

constructs to enable additional features such as limited and full automatic intra-

stage parallelization and mutual exclusion. With these, we can build applications

from many domains: rendering pipelines, MapReduce, sorting, signal processing, and

others. Figure 3.1 enumerates the building blocks of a GRAMPS application and

will serve as a legend for all of the GRAMPS application graphs in this thesis. The

rest of this chapter will first go through a non-technical example to help build an

intuition and then describe GRAMPS’s components in technical detail. In addition,

Appendix A enumerates the precise interface our GRAMPS implementations export

and provides the full contents of one of our regression tests as an example.

3.2 A GRAMPS Example

Figure 3.2 shows a (hypothetical) GRAMPS graph for making chocolate chip cook-

ies. Rather than diving into a highly technical workload, this more approachable

example is useful for explaining the highlights of the programming model. As shown,

dough preparation is broken into individual stages corresponding to logical steps in

3.2. A GRAMPS EXAMPLE 13

Scoop

Cookies
Put on

Sheets

Add Flour

& Chips

Add

Wet Mix

Cream in

Sugars

Melt

Butter

Make

Wet Mix

Make

Flour Mix

Figure 3.2: A hypothetical GRAMPS graph for preparing chocolate chip cookie
dough.

the recipe [7]. Each stage sends its output downstream and takes as input the in-

gredients and/or batter from its prior stage(s). Most of the stages are Thread stages

(serial) because they combine (mix/blend/cream) their inputs, but cookie scooping

is a Shader (data-parallel): as many chefs as are available can all independently take

a blob of dough and form it into cookies simultaneously. Since each can make cookies

of different sizes and shapes, the stage uses push for output, which enables condi-

tional and variable output. Note that, in this formulation, the formed cookies have

to serialize to be placed on the cookie sheets for baking: this spares the data-parallel

scoopers from synchronizing or colliding when accessing the shared cookie sheets,

but also constrains the overall parallelism. Section 3.4.2 describes queue sets, which

improve this situation, and shows an enhanced cookie dough graph 3.3.

Cookie dough preparation also presents a straightforward physical analog for con-

sidering queue footprint: counter space. Any staged ingredients and partially finished

batches of batter need to be set aside until it is time to use them. And, in every kitchen

where we have cooked, counter space is always at a premium. This provides a strong

incentive to prepare the batter (schedule the graph stages) in an order that leaves

minimal pending dishes and bowls to fit on the counters (buffer in the queues).

Similarly, the granularity with which the recipe (and all recipes) is designed illus-

trates another significant aspect of GRAMPS: the concept of an efficient, but natural,

work size that motivates the packet-based organization of queues and dispatching of

stages. The author of the recipe (designer of the GRAMPS graph) chooses quantities

14 CHAPTER 3. THE GRAMPS PROGRAMMING MODEL

for one batch that roughly fill the bowls, measuring utensils, etc. of the target bakers

(caches, SIMD widths, etc. of the available cores). And, while a baker would likely

scale up or down a little, for example, to double or halve a recipe, he or she is unlikely

to expend the effort to prepare a batch scaled down to a single cookie and would likely

split preparation into multiple batches rather than attempt a single tenfold-recipe.

3.3 Execution Graphs

GRAMPS application are expressed as execution graphs (also called computation

graphs). The graph defines and organizes the stages, queues, and buffers to describe

their data flow and connectivity. In addition to the most basic information required

for GRAMPS to run an application, the graph provides valuable information about

a computation that is essential to scheduling: insights into the program’s structure.

These include application-specified limits to the maximum depth for each queue,

which stages are sinks and which sources, and whether there are limits on automat-

ically instancing each stage. We have built a few different ways for developers to

create execution graphs, all of them are wrappers around the same core API: an

OpenGL/Streaming-like group of primitives to define stages, define queues, define

buffers, bind queues and buffers to stages, and launch a computation.

Note that GRAMPS supports general computation graphs to provide flexibility for

a rich set of algorithms. Graph cycles inherently make it possible to write applications

that loop endlessly through stages and amplify queued data beyond the ability of any

system to manage. Thus, GRAMPS, unlike pipeline-only APIs, does not guarantee

that all legal programs robustly make forward progress and execute to completion.

We have intentionally designed GRAMPS to encompass a larger set of applications

that run well, at the cost of allowing some that do not.

Forbidding cycles would allow GRAMPS to guarantee forward progress—at any

time it could stall a stage that was over-actively producing data until downstream

stages could drain outstanding work from the system—at the expense of excluding

some irregular workloads. Many of the GRAMPS versions of the applications in

Chapters 4 and 5 contain cycles in their graph structure. Sometimes cycles can be

3.4. QUEUES 15

eliminated by “unrolling” a graph to reflect a maximum number of iterations, bounces,

etc. However, not only is unrolling cumbersome for developers, it is awkward in

irregular cases, such as when different light rays bounce different numbers of times

depending on what objects and materials they hit. While handling cycles increases

the scheduling burden for GRAMPS, it remains possible to effectively execute many

graphs that contain them. We believe that the flexibility that graphs provide over

pipelines and DAGs outweighs the cost of making applications take responsibility

for ensuring they are well-behaved. The right strategy for notifying applications and

allowing them to recover when their amplification swamps the system is an interesting

avenue for future investigation.

3.4 Queues

GRAMPS queues provide the means by which the (independent) GRAMPS stages

communicate and exchange data. Each queue has two key application-specified traits:

its packet information—the type and granularity at which it handles data—and its

capacity—the maximum number of packets it can contain at any one time. Capacity

is an important knob the application can use to throttle a point in the execution

graph, for example because it has application specific knowledge about where work

is represented most compactly or where a producing stage will often outpace its

consumers. Note that it is an optional knob, however: the schedulers in all of our

GRAMPS implementations have various domain-oblivious heuristics for managing

queue depths that handle most situations well. When developing applications, we

generally start each queue with a large capacity and only need to tune one or two

strategic places in the graph.

In order to support applications with ordering requirements (such as OpenGL or

Direct3D), GRAMPS queues can also be specified as strictly FIFO. With multiple

or instanced consumers, this incurs two kinds of overheads: reduced parallelism as

out-of-order packets stall until the in-order stragglers arrive, and extra storage to

buffer and reorder the delayed packets.

16 CHAPTER 3. THE GRAMPS PROGRAMMING MODEL

3.4.1 Packets

As mentioned above, the basic unit with which stages enqueue and dequeue work

is called a packet. Each queue has its own packet layout, whose composition is

application-specified. Packets are intended to allow application logic to collect and

expose bundles of related work for efficient processing, for example, to amortize en-

queue/dequeue operations, to fill hardware SIMD lanes, or to increase memory co-

herence/locality benefits. At the same time, in regions of the graph that are not

performance critical, the application is free to use packets as small as it wishes.

There are also often natural granularities to an algorithm itself, as with the cookie

dough example.

GRAMPS imposes as few constraints on packet composition and layout as it can,

so as to preserve application flexibility and keep its own interfaces simple. Packets

have one of two high-level formats, defined as part of queue creation:

• Opaque: Opaque packets contain work that GRAMPS has no need to in-

terpret. The application graph specifies only the size of Opaque packets (so

GRAMPS can enqueue and dequeue them). Their contents are entirely defined

and interpreted by the logic of stages that produce and consume them.

• Collection: Collection packets are for queues with at least one end bound to a

data-parallel GRAMPS Shader stage. They represent a shared header together

with a set of independent data elements which GRAMPS will dispatch as a unit.

Collection packets specify three sizes: the packet size, the header size, and the

per-element size. Additionally, GRAMPS reserves the first word of the header

as a count of valid elements in the packet. Beyond that, the internal layout of

elements and any addition header fields are opaque to GRAMPS.

3.4.2 Queue Sets

The cookie dough graph in Figure 3.2 exhibits a common serialization problem: in-

dependent parallel processing followed by synchronization for distribution using a

shared resource. In this case, packets of dough can be scooped into individual cookies

3.4. QUEUES 17

Add Flour

& Chips

Add

Wet Mix

Cream in

Sugars

Melt

Butter

Make

Wet Mix

Make

Flour Mix

Scoop &

Lay Down

Figure 3.3: Replacing the Put on Sheets input queue from Figure 3.2 with a queue
set replaces the serialized Put On Sheets with the combined parallelizable Scoop &
Lay Down.

in parallel, but all cookies must route through a single baker to be put onto cookie

sheets without conflicts or collisions. The same phenomenon happens in many par-

allel applications. For example, renderers often shade pixels independently before

updating a shared frame buffer. On the one hand, this serialization often becomes

a bottleneck, but on the other, introducing fine grained locking of cookie sheet or

frame buffer locations has many unpleasant effects: managing explicit locking is a

burden on application developers, suffers from contention, and can be subtle to keep

correct. Instead, performant parallel applications often subdivide the shared resource

into disjoint regions that can each be updated independently.

Figure 3.3 displays queue sets, GRAMPS’s construct for applying this technique.

A queue set functions like N ‘subqueues’ bundled together as a single logical queue.

Different subqueues can be processed in parallel, but GRAMPS ensures that for each

subqueue at most one packet is in flight at a time. In the updated example, each

subqueue corresponds to a distinct cookie sheet (or portion of a cookie sheet).

An application can use a queue set statically or dynamically. When used statically,

the graph specifies the number of subqueues and the stages reference them with dense

indices. Dynamically, producing output to a non-existent subqueue creates it and

subqueues are identifies with arbitrary keys that GRAMPS transparently internally

maps onto dense indices (or some other suitable data structure).

18 CHAPTER 3. THE GRAMPS PROGRAMMING MODEL

3.5 Stages

GRAMPS stages correspond to nodes in the execution graph. The fundamental

reason to partition computation into stages is to increase performance. Stages oper-

ate asynchronously and therefore expose inter-stage parallelism. More importantly,

stages encapsulate phases of computation and indicate computations that exhibit

similar execution or data access characteristics (typically SIMD processing or mem-

ory locality). Grouping these computations together yields opportunities for efficient

processing. Additionally, some computations are data-parallel and separating them

as distinct stages exposes intra-stage parallelism that GRAMPS can capture with

automatic instancing. GRAMPS stages are useful when the benefits of coherent exe-

cution and/or greater parallelism outweigh the costs of enqueuing and dequeuing the

data.

GRAMPS supports three types of stages that correspond to distinct sets of compu-

tational characteristics. A stage’s type serves as a hint facilitating work assignment,

resource allocation, and computation scheduling. We strove for a minimal number

of simple abstractions that still captured the key execution models for mapping well

to many-core platforms. In addition to a general purpose Thread stage, we included

two others: stages implemented as fixed-function/dedicated hardware processing and

data-parallel Streaming/GPGPU-style Shader stages.

A GRAMPS stage definition consists of:

• Type: Either Thread, Fixed-Function, or Shader.

• Program: Either program code for a Thread/Shader or configuration parame-

ters for a fixed-function unit.

• Buffers: Random-access, fixed-size data bindings.

• Queues: Input, Output, In-Place, and “Push”/“Coalescing” queue bindings.

We expect GRAMPS programs to run on platforms with significantly larger num-

bers of processing resources than stages. Thus, when possible, GRAMPS will execute

multiple copies of a stage’s program in parallel (each operating on distinct input

3.5. STAGES 19

packets). We refer to each executing copy of a stage as an instance while stages that

require serial processing (e.g. initialization) execute as singletons. Different graphs

allow different amounts of instancing. Recall that in Figure 3.2, Scoop Cookies can be

freely instanced (but stuck serializing afterwards) whereas in Figure 3.3 the combined

Scoop & Lay Down can be instanced only as much as separate subqueues have input

(i.e., separate cookie sheets are available).

3.5.1 Thread Stages

Thread stages are best described as traditional CPU-style threads. They are de-

signed for task-parallel, serial, and other regions of an application best suited to

large per-element working sets or operations dependent on multiple packets at once

(e.g., repacking or re-sorting of data). They are expected typically to fill one of

two roles: repacking data between Shader stages, or processing bulk chunks of data

where sharing/reuse or cross-communication make data-parallel Shaders inefficient.

Importantly, since Thread stages may be stateful—i.e., may retain state internally as

they process packets—they usually must be manually parallelized/instanced by the

application rather than automatically by GRAMPS. There is one situation in which

GRAMPS can instance a Thread stage: if its sole input is a queue set and all of

the stage’s processing is per-subqueue, then the application can flag the stage and

GRAMPS will instantiate one copy for each input subqueue.

Thread stage instances manipulate queues via two GRAMPS intrinsics—reserve,

and commit—which operate in-place. Each takes four arguments: the queue, the

number of packets, optional flags, and an optional subqueue identifier (either a dense

index or a sparse key). reserve returns the caller a “window” that is a reference

to one or more contiguous packets. GRAMPS guarantees the caller exclusive access

to this region of the queue until it receives a corresponding commit notification. An

input queue commit indicates that packet(s) have been consumed and can be re-

claimed. Output queue commit operations indicate the packet(s) are now available

for downstream stages.

reserve is a potentially blocking operation: an instance will be suspended on an

20 CHAPTER 3. THE GRAMPS PROGRAMMING MODEL

input reservation if there is no data ready or an output reservation if the queue is

currently at its specified capacity. Both reserve and commit are potential preemption

points where a scheduler can choose to suspend an instance if a higher priority instance

is runnable.

The queue reserve-commit protocol allows stages to perform in-place operations

on queue data and allows GRAMPS to manage queue access and underlying storage.

Queue windows permit various strategies for queue implementation and add a degree

of indirection that enables customized implementations for systems with distributed

address spaces, explicit prefetch, or local store capabilities.

3.5.2 Fixed-Function Stages

GRAMPS allows stages to be implemented by fixed-function or specialized hardware

units. GRAMPS effectively treats them as Thread stages with peculiar internals: they

inter-operate with the rest of GRAMPS via queue reservations and commitments and

cannot be instanced. Applications configure these units via GRAMPS by providing

hardware-specific configuration information at the time of stage specification.

3.5.3 Shader Stages

Shader stages define short-lived, run-to-completion computations applied indepen-

dently to every input packet, akin to traditional GPGPU shaders/kernels. They are

designed as an efficient mechanism for running data-parallel regions of an applica-

tion. GRAMPS leverages these properties in two ways: automatic instancing and

automatic queue management. Since Shaders are stateless across packets, GRAMPS

can freely create up to as many concurrent instances as there are available packets to

ensure large amounts of parallelism.

Additionally, GRAMPS manages queue inputs and outputs for Shader instances

automatically, which simplifies Shader programs and allows the scheduler to guar-

antee they can run to completion without blocking. As input packets arrive in a

queue, GRAMPS internally makes corresponding output packet reservations. Once

the paired reservations are obtained, GRAMPS runs the packet’s worth of Shader

3.6. COMMON DESIGN IDIOMS 21

instances. Each instance receives a reference to the shared packet header and to

one element in each of the pre-reserved input and output packets (recall that Shader

stages use Collection packets, as described in Section 3.4.1). When all of the instances

have completed, GRAMPS internally commits the inputs and outputs. With ordered

queues, pre-reserving Shader packets also lets GRAMPS ensure that the commit or-

der of output packets corresponds exactly to the order of inputs, and preserve order

across stages. Input and output pre-reservation reflects GRAMPS Shaders’ GPGPU

antecedents, but, like allowing cycles in execution graphs, GRAMPS Shaders have an

additional optional operation, push, that significantly extends their flexibility. push

dynamically inserts elements into unordered output queues, thus allowing conditional

output. Note that unlike reserve and commit, and in sync with the data-parallel

nature of Shader stages, push sends individual elements which GRAMPS accumu-

lates into Collection packets. It coalesces as full a packet as possible, sets the element

count in the header, and enqueues the packet for downstream consumption.

Push-style coalescing applied to an input queue allows a Shader stage to perform

reductions. In this mode, GRAMPS merges elements from partially full input packets

to provide the consuming instance with as full a packet as possible. In turn, the

consumer compacts/combines all of the elements in the packet to a single result.

An application graph can route this once-filtered data downstream or it can bind

the input queue “in-place”. With an “in-place” binding, the Shader performs a full

parallel reduction: compacted output packets are themselves recoalesced into full

packets and recirculated down to a single, final result, which GRAMPS propagates

downstream as if push’ed.

3.6 Common Design Idioms

In our experience building GRAMPS applications, a few application graph constructs

emerged as common building blocks and important cases to consider when tuning a

GRAMPS implementation:

• Task generator → Shader consumer: A singleton stage subdivides an input

range or read-only buffer into (offset, length) pairs to be processed by a Shader.

22 CHAPTER 3. THE GRAMPS PROGRAMMING MODEL

Important traits are distributing consumer work to idle processors before pre-

empting the singleton producer and a very simple producer that outputs packets

rapidly.

• Shader producer → Shader consumer: The canonical GRAMPS pipeline exam-

ple: a work-rich instanced producer feeding a freely instanced consumer. The

important trait is balancing the resources assigned to each stage. Aggressively

preempting producer instances with consumers keeps the queue footprint small,

but frequently runs out work and must switch back to producers. Too many

context switches, especially rapid ping-ponging, can be expensive.

• Queues as barriers: While GRAMPS applications tend to exhibit producer-

consumer parallelism between stages, sometimes an application needs to block

one stage until its upstream is entirely done. It does this by issuing an unsatis-

fiable reserve, generally for -1 packets. This leaves the stage unrunnable until

all producers on that queue have completed, at which point GRAMPS returns

a short reservation. The important trait is obvious: the blocked stage will not

run until all of its input is available. This can influence, for example, decisions

on when to wait to coalesce a more full packet versus flush it or when to even

check if a stage can be scheduled.

Chapter 4

Future Rendering Architectures

This chapter presents a case study of GRAMPS as a programming model for future

graphics architectures. We examine a rasterizing and a ray-tracing renderer as well as

a hybrid of the two on two simulated platforms: one more heterogeneous and GPU-

like and the other more CPU-like. Most of the content of this chapter was published

separately in Transactions on Graphics, January 2009 [41].

4.1 Introduction

Rendering is the first application domain where we examine GRAMPS. Not only

was GRAMPS highly influenced by the graphic pipeline, but rendering is a critical

‘table-stakes’ area for parallelism, especially heterogeneous and producer-consumer

parallelism: the past decade-plus has seen the rise of commodity GPUs with enormous

computational power and the ability to render complex, high-resolution scenes in real

time using Z-buffer rasterization. At the same time, the real-time photorealistic

rendering problem is not solved, and there remains interest in exploring advanced

rendering algorithms such as ray tracing, REYES, and combinations of these with

the traditional graphics pipeline. Implementing them in the confines of current GPU

programming models is awkward and nonperformant (e.g., [20, 46]), however, but

GRAMPS potentially fits well.

While the earliest GPUs were simple, application-configurable engines, the history

23

24 CHAPTER 4. FUTURE RENDERING ARCHITECTURES

of high-performance graphics over the past three decades has been the co-evolution

of a pipeline abstraction (the traditional graphics pipeline) and the corresponding

driver/hardware devices (GPUs). In the recent past, the shading stages of the pipeline

became software programmable. Prior to the transition, developers controlled shading

by toggling and configuring an assortment of fixed options and parameters, but the

widespread innovation in shading techniques led to an increasingly complex matrix of

choices. In order to accommodate the trend towards more general shading, researchers

and then graphics vendors added programmable shading to the graphics pipeline.

We see an analogy between the evolution from fixed to programmable shading

and the current changes for enabling and configuring pipeline stages. After remain-

ing static for a long time, there are a variety of new pipeline topologies available and

under exploration. Direct3D 10 added new geometry and stream-output stages [5].

The Xbox 360 added a new stage for tessellation (also included in the latest iterations

of Direct3D and in OpenGL via extensions). We believe that future rendering tech-

niques and increasing non-graphical usage will motivate more new pipeline stages and

configuration options. As was true with pre-programmable shading, these new abili-

ties are currently all delivered as predefined stage and pipeline options to be toggled

and combined. Looking forward, we propose to instead expose the hardware capabil-

ities via GRAMPS and programmatically construct graphics pipelines as GRAMPS

applications.

This is not an (unthinkably) radical change. In fact, it formalizes and exposes

the key elements of current GPU hardware: FIFOs and work-buffers for flow control

and accumulating work, shader cores for data-parallel processing, and custom fixed-

function units for other stages, such as rasterization. Also, as suggested above, it

mirrors the multi-configuration to programmable transition in shading now applied

to the pipeline topology itself. Finally, the notion of ‘GPU’ itself is changing. At the

extreme is Intel’s Larrabee [40], an entirely alternate architecture, but even recent

generations of conventional GPUs are being described and designed as more general

throughput-oriented architectures.

In this chapter, we examine how GRAMPS holds up as a programming model

for rendering on future graphics hardware. Specifically, we survey current graphics

4.2. BACKGROUND AND RELATED WORK 25

architectures and programming models and then assess GRAMPS in terms of the

design goals from Chapter 1:

• Broad application scope: An OpenGL/Direct3D-like rasterization pipeline,

a ray tracing graph, and an extension for the rasterization pipeline to incorpo-

rate ray traced effects.

• Multi-platform applicability: GRAMPS runtimes for two simulated archi-

tectures: a more general CPU-like system and a more custom GPU-like one.

• Performance: Scheduling logic for the two runtimes that demonstrate high

scale-out utilization with good queue footprint management.

• Tunability: Grampsviz, an application for visualizing the execution of our

renderers and descriptions of some application graph improvements that had

major effects.

4.2 Background and Related Work

4.2.1 GPUs

As mentioned above, modern GPUs have become very sophisticated high-performance

platforms for real-time graphics. Two widely available examples are NVIDIA’s 400-

Series [32] and AMD’s HD 5000-Series [2], both built around a pool of highly multi-

threaded programmable cores tuned to sustain multiple teraflops of performance when

performing shading computations. They deliver additional computing capabilities

via fixed-function units that perform tasks such as rasterization, texture filtering,

and frame-buffer blending. While the programmable cores are exposed for general

purpose workloads, much of this non-programmable hardware is central to how GPUs

schedule graphics and implement the graphics pipeline so efficiently. As a result,

GPUs constitute a heavily-tuned platform for rasterization-based z-buffer rendering

but offer only limited benefits for alternative graphics algorithms.

26 CHAPTER 4. FUTURE RENDERING ARCHITECTURES

VSNIAN
Trace PS2

RO PSVS1 RastIA 1
OM

F
ra

m
e
 B

u
ff

e
r

V
e
rt

e
x
 B

u
ff

e
rs

Ray Tracing Extension

Figure 4.1: Our Direct3D-based pipeline including optional extension.

4.2.2 Graphics on Stream Processors

Two different prior efforts explored rendering with stream processors/streaming lan-

guages: one on Imagine and one on Raw [34, 10]. Both formulated OpenGL-like

pipelines as stream applications much like a GRAMPS application graph. Unlike

GRAMPS, however, both suffered from needing to constrain (fake) the dynamic ir-

regularity of rendering in predictable terms for their static scheduling.

Both systems redefined and recompiled their pipelines per scene and per frame

they rendered. Not only that, as part of tuning and scheduling each scene-specific

pipeline they needed to pre-render each frame once to gather statistics first. In the

six-plus years since the streaming pipelines were first published, this irregularity and

scene-dependent variation has become even more prominent: branching in shaders

is routine, as is composing final frames from large numbers of off-screen rendering

passes.

Around the same time, Purcell demonstrated a somewhat reverse accomplishment:

using the programmable elements of a GPU as a stream processor and performing

ray tracing [36]. Stuck inside the Breadth-First-like environment of the graphics

pipeline’s shading stages, this system and its successors always struggled with load-

balancing [14, 20].

4.3. APPLICATION SCOPE 27

Tiler Sampler Camera Intersect

BlendShade
Shadow

Intersect

F
ra

m
e
 B

u
ff

e
r

Figure 4.2: Our ray tracing application graph. Note that the queue from Shade back
to Intersect (for secondary rays) makes the graph cyclic.

4.3 Application Scope

In this section we describe three example rendering systems framed in terms of

GRAMPS: a simplified Direct3D pipeline, a packet-based ray tracer, and a hybrid

that augments the simplified Direct3D pipeline with additional stages used for ray

tracing.

4.3.1 Direct3D

The GRAMPS graph corresponding to our sort-last formulation of a simplified Di-

rect3D pipeline is shown in Figure 4.1. A major challenge of a Direct3D implementa-

tion is exposing high levels of parallelism while preserving Direct3D fragment ordering

semantics.

The pipeline’s front-end consists of several groups of Input Assembly (IA) and

Vertex Shading (VS) stages that operate in parallel on disjoint regions of the in-

put vertex set. Currently, we manually create these groups—built-in instancing of

subgraphs is a potentially useful future addition to GRAMPS. Each IA/VS group

produces an ordered stream of post transform primitives. Each input is assigned

a sequence number so that these streams can be collected and totally-ordered by a

singleton Reorder (RO) stage before being delivered to the fixed-function rasterizer

(Rast).

The pipeline back-end starts with a Pixel Shader (PS) stage that processes frag-

ments. After shading, fragment packets are routed to the appropriate subqueue in

28 CHAPTER 4. FUTURE RENDERING ARCHITECTURES

the output queue set based on their screen space position, much like described in

Section 3.4.2. The queue set lets GRAMPS instance the Output Merger while still

guaranteeing that fragments are blended into the frame buffer atomically and in the

correct order. Note that Rast facilitates this structure by scanning out packets of

fragments that never cross the screen space routing boundaries. Notice that the Di-

rect3D graph contains no stages that correspond to fixed-function texture filtering.

While a GRAMPS implementation is free to provide dedicated texturing support (as

modern GPUs do through special instructions), special-purpose operations that occur

within a stage are considered part of its internal operation, not part of the GRAMPS

programming abstraction or any GRAMPS graph.

4.3.2 Ray Tracer

Our implementation of a packet-based ray tracer resembles Purcell’s streaming im-

plementation [36] and maps natural components of ray tracing to GRAMPS stages

(Figure 4.2). With the exception of Tiler, Sampler, and Blend, whose performance

needs are satisfied by singleton Thread stages, all graph stages are instanced Shader

stages. All queues in the packet tracer graph are unordered.

A ray tracer performs two computationally expensive operations: ray-scene inter-

section and surface hit point shading. Considered separately, each of these operations

is amenable to wide SIMD processing and exhibits favorable memory access charac-

teristics. Because recursive rays are conditionally traced, SIMD utilization can drop

severely if shading directly invokes intersection [6].

Our implementation decouples these operations by making Intersect, Shadow In-

tersect, and Shade separate graph stages. Thus, each of the three operations executes

efficiently on batches of inputs from their respective queues. To produce these batches

of work, the ray tracer leverages the GRAMPS queue push operation. When shading

yields too few secondary rays to form a complete packet, execution of Intersect (or

Shadow Intersect) is delayed until more work is available. Similarly, if too few rays

from Intersect need shading, they won’t be shaded until a sufficiently large batch is

available. This strategy could be extended further using more complex GRAMPS

4.3. APPLICATION SCOPE 29

graphs. For example, separating Intersect into a full subgraph could allow for rays to

be binned at individual BVH nodes during traversal.

Lastly, the ability to cast ray tracing as a graph with loops, rather than a feed-

forward pipeline allows for an easy implementation of both max-depth ray termination

and also ray tree attenuation termination by tracking depth/attenuation with each

ray [17]. While reflections to a fixed maximal depth could also be modeled with a

statically unrolled pipeline, this is an awkward implementation strategy and does not

permit ray tree attenuation.

4.3.3 Extended Direct3D

By constructing execution graphs that are decoupled from hardware, GRAMPS cre-

ates an opportunity for specialized pipelines. Our third renderer extends the Direct3D

pipeline to form a new graph that adds ray-traced effects (Figure 4.1, including the

shaded portion). We insert two additional stages, Trace and PS2, between PS and OM

and allow Extended Direct3D Pixel Shaders to push rays in addition to performing

standard local shading. Trace performs packetized ray-scene intersection and pushes

the results to a second shading stage (PS2). Like PS, PS2 is permitted to send its

shaded output to OM, or generate additional rays for Trace (the Extended Direct3D

graph contains a loop). We introduced PS2 as a distinct stage to retain the ability

to specialize PS shading computations for the case of high coherence (fragments in a

packet from Rast all originate from the same input triangle) and to separate tracing

from shading as explained above.

There are two other important characteristics of our Extended Direct3D renderer.

Our implementation uses a pre-initialized early-Z buffer from a prior Z-only pass

to avoid unnecessary ray-scene queries. In addition, early-Z testing is required to

generate correct images because pixel contributions from the PS2 stage can arrive

out of triangle draw order (input to PS2 is an unordered push queue).

Note that while this example uses push only for the purposes of building ray

and shading packets, other natural uses include handling fragment repacking when

coherence patterns change, or as a mechanism for efficiently handling a constrained

30 CHAPTER 4. FUTURE RENDERING ARCHITECTURES

form of data amplification or compaction.

4.4 Multi-platform

4.4.1 Hardware Simulator

We developed a machine simulator to conduct our evaluation of GRAMPS as a pro-

gramming model for rendering. We chose to use a simulator instead of existing

hardware for three reasons: access, flexibility, and instrumentability. Low-level GPU

programming access is highly proprietary and minimally documented. Even with

willing vendor collaboration, drivers for modern graphics hardware are enormously

complex; customizing them to our ends would be very challenging. Additionally,

many of the features we wish to explore, for example, push and Thread stages, are

simply unavailable in current hardware. Finally, one of the most important aspects

of validation and bring-up, at least for a completely new programming model, is the

ability to report a wide variety of system properties. With real hardware, it can

be invasive and challenging, if not impossible, to measure a consistent snapshot of

system-wide state. In simulation, by contrast, it is straightfoward.

Our simulator is single-threaded (though it simulated the execution of many paral-

lel threads). While this makes simulation slower, it enormously simplifies maintaining

such things as a shared, global clock and deterministic execution. Essentially, on ev-

ery simulated clock, the main simulation loop runs the top-level Tier-N scheduler (see

below), and steps each core and any fixed function units until the GRAMPS runtime

detects application completion or deadlock (in the case of flawed application graphs

that contain loops).

The basic execution resource is a simulated, multi-threaded programmmable core,

referred to as an XPU. XPUs use a MIPS64 instruction set architecture [27] ex-

tended with a custom 16-wide SIMD vector instruction set that includes basic math

and gather/scatter load/store operations. They can select and execute one hard-

ware thread per clock. We develop XPU programs using cross-compiling versions of

GCC and GNU Binutils that we extended to support our vector instructions. The

4.4. MULTI-PLATFORM 31

core simulation supports many parameters, the most important being the number of

execution contexts (hardware threads) and the two latency factors.

Latency in XPU cores is modeled very simply. A core has two values—an ‘ALU

latency’ and a ’memory latency’. The ALU latency is the number of cycles a vector

instruction takes to retire. It is applied per-hardware thread, on the presumption of

pipelining and/or per-thread resources. That is, a four-threaded XPU with a four

cycle ALU latency, for example, can complete one vector instruction per cycle if all

of its thread slots are active. Memory latency is also a single value. It functions as

the overall (hypothetical) memory hierarchy and is applied to all data accesses (in-

struction accesses are single cycle). These simple latencies are gross approximations,

but we believe them sufficient for assessing GRAMPS’s high-level plausibility. One

natural area of future research, that is already under initial investigation, is enriching

instruction issue and the memory hierarchy so that they can mimic the behaviors of

a variety of existing CPU and GPU designs.

In our experiments, we used two different collections of settings for cores. XPU

fat cores are general-purpose cores optimized for throughput. They are in-order, four-

threaded processors with both an ALU and memory latency of four cycles. XPU micro

cores are intended to resemble GPU shader cores and execute efficiently under the load

of many lightweight threads. Each micro core has 24 independent hardware thread

execution slots. Thus, with 16-element-at-a-time vector instructions, each micro core

is capable of hardware-interleaved execution of 384 Shader instances. However, re-

flecting their heavy emphasis on longer serial latencies hidden by multi-threading,

they are configured with an ALU latency of six cycles and a memory latency of 100

cycles.

To reflect the heterogeneous nature of graphics hardware, and to exercise the

Fixed-Function stage support in GRAMPS, we also implemented a simulated hard-

ware rasterizer that can be enabled optionally, as shown by the Direct3D graph (Sec-

tion 4.3.1). It employs the scan conversion algorithm from [33] and can rasterize an

entire triangle in a single simulated clock, to mimic highly optimized custom func-

tional units.

32 CHAPTER 4. FUTURE RENDERING ARCHITECTURES

CPU-Like: 8 Fat Cores, Rast GPU-Like: 1 Fat Core, 4 Micro Cores, Rast, Sched

T0 T1

T2 T3

Fat Core 0

T0 T1

T2 T3

Fat Core 4

T0 T1

T2 T3

Fat Core 1

T0 T1

T2 T3

Fat Core 5

T0 T1

T2 T3

Fat Core 2

T0 T1

T2 T3

Fat Core 6

T0 T1

T2 T3

Fat Core 3

T0 T1

T2 T3

Fat Core 7

Rasterizer RasterizerRasterizer

Micro Core Scheduler

T0 T1

T2 T3

Fat Core 0Micro Core 1Micro Core 0

Micro Core 3Micro Core 2

Figure 4.3: The CPU-like and GPU-like simulator configurations: different mixtures
of XPU fat (blue) and micro (orange) cores plus a fixed function rasterizer. Boxes
within the cores represent hardware thread slots.

We chose two specific configurations of our simulation environment for the hy-

pothetical graphics architectures in our experiments. They are shown in Figure 4.3.

The GPU-like configuration contains one fat core, four micro cores with dedicated

Shader scheduling/dispatch support (see below), and a fixed-function rasterizer. As

the name indicates, It is envisioned as an evolution of current GPUs. The CPU-like

configuration consists of the rasterizer plus eight fat cores, mimicking a more gen-

eral purpose many-core implementation. This choice of machine configurations allows

us to explore two GRAMPS scheduler implementations employing different levels of

hardware support.

4.4.2 GRAMPS Runtimes

We built implementations of GRAMPS for the two configurations directly into the

simulator (as opposed to running them as simulated code). In addition to imple-

menting the programming model, they function as mini-operating systems: applica-

tion code calls GRAMPS via the MIPS syscall instruction and GRAMPS interacts

directly with the XPU logic to, for example, launch and context-switch hardware

threads. Their primary nontrivial run-time components are their queue implementa-

tion, dispatch of Shader instances, and scheduling. The first two are discussed below

and scheduling is discussed in detail as part of performance (Section 4.5.1).

Both simulated GRAMPS runtimes share the same queue implementation: one

fixed-sized circular buffer per application queue, sized to the capacity specified in

4.4. MULTI-PLATFORM 33

the application graph. Ordered queues use the buffer as a rolling FIFO: there are

head and tail pointers, each with separate ‘reserve’ and ‘commit’ marks. These are

updated on reserve and commit, respectively, and wrap around when they reach the

end of the buffer. The region between the head ‘reserve’ and ‘commit’ reflects pending

output reservations (packets being produced) and the region between the tails marks

reflects pending input reservations (packets being consumed). The entries between

the tail ‘reserve’ and head ’commit’ are packets available for consumption and the

space between the head ‘reserve’ and tail ‘commit’ is empty. Unordered queues are

simpler. They have two bitvectors: one indicating buffer entries that contain packets

available for input and one tracking entries with packets available for output.

The two runtimes implement Shaders quite differently. The GPU-like version is

simple. Recall from Figure 4.3 that its micro cores are dedicated units for running

Shader stages. Thus, its version of GRAMPS launches Shader instances ‘in hard-

ware’: it calls the XPU code to create and reap hardware contexts as needed. The

CPU-like version, however, implements Shader instancing ‘in software’. It keeps a

pool of privileged, internal meta-Thread stages, called ‘Dispatch stages’. When the

scheduler decides to schedule Shader work, it records the stage information and pre-

reservation in a data structure we call ‘the scoreboard’ and marks an idle Dispatch

stage as runnable. When the Dispatch stage runs, it reads the scoreboard entry, con-

firms its pre-reservation, executes the Shader kernel (just a call through a function

pointer), and post-commits. After it finishes, the Dispatch stage queries the runtime

to determine whether to process another scoreboard entry or resume idling.

We run the renderers by linking them against a library with the combined simulator-

runtime. The GRAMPS entry points that define the application graph run natively

(i.e., outside the simulator). Then, the call to launch the execution graph mirrors a

device driver: it bootstraps the simulated hardware; passes it the stages, queues, etc.;

and starts (simulated) asynchronous execution.

34 CHAPTER 4. FUTURE RENDERING ARCHITECTURES

1 2 3 4

75 6

F
ra

m
e
 B

u
ff

e
r

Figure 4.4: The static stage priorities for the ray tracing application graph. In general,
each consumer is higher priority than its producer.

4.5 Performance

4.5.1 Scheduling

Recall that the goal of the scheduler in any GRAMPS implementation is to maxi-

mize scale-out parallelism, or machine utilization, while keep working sets, or queue

depths, small. Specifically, it seeks to synthesize at run-time what streaming systems

arrange during up-front compilation: aggregated batches of parallel work with strong

data locality. The queues of the computation graphs are intended to delineate such

coherency groupings. The GRAMPS scheduler then balances the need to accumu-

late enough work to fill all available cores against the storage overheads of piling up

undispatched packets and the computational overhead of making frequent scheduling

decisions. Note that compared to a native GPU or other single pipeline-specific sched-

ule GRAMPS’s generality creates a significant scheduling disadvantage: GRAMPS

lacks semantic knowledge of—and any scheduling heuristics based on—stage internals

and the data types passed between them. The GRAMPS abstractions are designed

to give an implementer two primary hints to partially compensate: the topology of

the execution graph, and the capacity of each queue.

Our scheduling algorithm for both simulated configurations assigns each stage

a static priority based upon its proximity in the graph to sink nodes (stages with

no output queues) and distance from source nodes (stages with no input queues),

as shown in Figure 4.4. Specifically, just before execution, the runtime recursively

traverses the execution graph depth-first (from each stage that is initially marked

4.5. PERFORMANCE 35

runnable), marking each stage it visits. It increments the priority with each level it

descends and unwinds when it encounters a sink or a stage that has already been

visited. In a pipeline or DAG, this gives the start(s) lowest weight and the end(s)

highest weight which predisposes the scheduler towards draining work out of the

system and keeping queue depths small.

Additionally, the scheduler maintains an ‘inspect’ bitvector containing a field for

each graph stage. A stage’s inspectable bit is set whenever a new input packet

is available or output packet is consumed (in case it was blocked on a full output

queue). Its bit is cleared whenever the scheduler next inspects the stage and either

dispatches all available input or determines the stage is not truly runnable.

Within the simulator, our scheduler is organized hierarchically in ‘tiers’. The

top tier (Tier-N) has system-wide responsibilities for notifying idle cores and fixed-

function units when they should look for work. The cores themselves then handle the

lower levels of scheduling.

Fat Core Scheduling

Since we intended fat cores to resemble CPUs and be suitable for arbitrary threads,

the GRAMPS fat-core scheduling logic is implemented directly in software. It is

organized as a fast, simple Tier-0 that manages a single thread slot and a more

sophisticated Tier-1 that is shared per-core.

Tier-1 updates and maintains a prioritized work list of runnable instances based

upon the inspect bitvector. It also groups Shader instances for launch and issues the

implicit reserve and commit operations on their behalf. Tier-1 runs asynchronously

at a parameterized period (one million cycles in our experiments). However, if a Tier-

0 scheduler finds the list of runnable instances empty (there is no work to dispatch),

Tier-0 will invoke Tier-1 before idling its thread slot.

Tier-0 carries out the work of loading, unloading, and preempting instances on

individual thread slots. It makes no “scheduling” decisions other than comparing the

current thread’s priority to the front of the work list at potential preemption points.

For Thread stages, preemption points include queue manipulations and terminations.

For Shader stages, preemption is possible only between instance invocations.

36 CHAPTER 4. FUTURE RENDERING ARCHITECTURES

Triangles Fragments/Tri

Teapot 6,230 67.1
Courtyard 31,375 145.8
Fairy 174,117 36.8

Table 4.1: Test scenes. Courtyard uses character models from Unreal Tournament 3.
Fairy is a complex scene designed to exercise modern ray tracers.

Micro Core Scheduling

In the GPU-like configuration, all Shader work is run on micro cores. Similar to

current GPU designs, micro cores rely on a hardware-based scheduling unit to manage

their numerous simple thread contexts (see Figure 4.3). This unit is functionally

similar to combined fat-core Tier-1 and Tier-0’s with two significant differences: a

single hardware Tier-1 is shared across all micro cores, and it is invoked on demand

at every Shader instance termination rather than asynchronously.

When data is committed to Shader queues, the micro-core scheduler identifies (in

order of stage priority) input queues with sufficient work, then pre-reserves space in

the corresponding stage’s input and output queues. It associates this data with new

Shader instances and assigns the instances to the first unused thread slot in the least-

loaded micro core. When Shader instances complete, the scheduler commits their

input and output data, then attempts to schedule a new Shader instances to fill the

available thread slot. The micro-core scheduler also takes care of coalescing elements

generated via push into packets.

4.5.2 Evaluation

We chose three test scenes (Table 4.1) and rendered them at 1024 with each of our ren-

derers on our two (simulated) hardware configurations. The ray tracer casts shadow

4.5. PERFORMANCE 37

rays and one bounce of reflection rays off all surfaces. Extended Direct3D casts only

shadow rays. The scenes vary in both overall complexity and distribution of triangle

size, requiring GRAMPS to dynamically balance load across graph stages. Overall,

we were surprised at how effective our unsophisticated scheduling proved.

As explained in the discussion of scheduling, our primary focus is our implemen-

tations’ abilities to find parallelism and to manage queues (especially in the context

of loops and the use of push). To evaluate this, we measure the extent to which

GRAMPS keeps core thread execution slots occupied with active threads, and the

depth of queues during graph execution.

The simulation introduces two simplifying assumptions: First, although our im-

plementations seek to minimize the frequency at which scheduling operations occur,

we assign no cost to the execution of the GRAMPS scheduler or for possible con-

tention in access to shared queues. Second, as described above, we incorporate only

a simple memory system model—a fixed access time of four cycles for fat cores and

100 cycles for micro cores. Given these assumptions, we use thread execution-slot

occupancy as our performance metric rather than ALU utilization (ALUs may be un-

derutilized due to memory stalls or low SIMD efficiency even if a slot is filled). Slot

occupancy is convenient because it directly reflects the scheduler’s ability to recognize

opportunities for parallelism. At the same time, it is less dependent on the degree of

optimization of Thread/Shader programs—which is not a need unique to GRAMPS

nor a highly optimized aspect of our application implementations.

Table 4.2 summarizes the overall simulation statistics. Note that on GPU-like

configurations, we focus on the occupancy of the micro cores that run Shader work

(the fat core in the GPU-like configuration is rarely used as our graphs perform a

majority of computation in Shaders).

Both GRAMPS implementations maintained high thread-slot occupancy with all

of the renderers. With the exception of rendering the Fairy using Direct3D, the

GRAMPS scheduler produced occupancy above 87% (small triangles in the Fairy

scene bottle-neck the pipeline in RO limiting available parallelism—see GPU-like fat

core occupancy in Table 4.2).

38 CHAPTER 4. FUTURE RENDERING ARCHITECTURES

CPU-like Configuration GPU-like Configuration
Fat Core Peak Queue Fat Core Micro Core Peak Queue

Occup (%) Size (KB) Occup (%) Occup (%) Size (KB)
Teapot D3D 87.8 510 13.0 95.9 1,329

Ext. D3D 90.2 582 0.5 98.8 1,264
Ray Tracer 99.8 156 3.2 99.9 392

Courtyard D3D 88.5 544 9.2 95.0 1,301
Ext. D3D 94.2 586 0.2 99.8 1,272
Ray Tracer 99.9 176 1.2 99.9 456

Fairy D3D 77.2 561 20.5 81.5 1,423
Ext. D3D 92.0 605 0.8 99.8 1,195
Ray Tracer 100.0 205 0.8 99.9 537

Table 4.2: Simulation results: Core thread-slot occupancy and peak queue footprint
of all graph queues.

Our emulations maintained high occupancy while keeping worst-case queue foot-

print low. In all experiments queue sizes remained small enough to be contained

within the on-chip memories of modern processors. The ray tracer, despite a graph

loop for reflection rays and heavy use of push, had by far the smallest queue footprint.

This was the direct result of not needing ordered queues. With ordering enabled,

when instances complete out of order, as happens from time to time, GRAMPS can-

not make their output available downstream or reclaim it until the missing stragglers

arrive.

4.6 Tunability

While the GRAMPS renderers we present performed well, our experiences indicated

that understanding how a given formulation executes and navigating among alterna-

tives can make a big difference.

4.6.1 Diagnosis

The fact that our implementations ran inside a simulation allowed us to measure a

great deal of raw statistics. While they were highly useful, they were also unwieldy for

4.6. TUNABILITY 39

C
o
re
 0

C
o
re
 1

C
o
re
 2

C
o
re
 3

C
o
re
 4

C
o
re
 5

C
o
re
 6

C
o
re
 7

In
te
rs
e
ct

S
h
a
d
o
w
 I
n
te
rs
e
ct

S
h
a
d
e

B
le
n
d

C
a
m
e
ra

S
a
m
p
le
r

T
il
e
r

S
ta

g
e

 A
ss

ig
n

m
e

n
t

to
 T

h
re

a
d

 S
lo

ts

O

v
e

ra
ll

 M
a

ch
in

e
 U

ti
li

z
a

ti
o

n
 B

y
 S

ta
g

e

5
0
%

7
5
%

1
0
0
%

2
5
%

0
%

S
im

u
la

to
r

U
ti

li
z

a
ti

o
n

 -
 R

a
y

 T
ra

ce
r

 (3
7

9
 m

il
li

o
n

 c
yc

le
s)

F
ig

u
re

4.
5:

A
gr

am
p
sv

iz
v
is

u
al

iz
at

io
n

of
ra

y
tr

ac
in

g
th

e
T
ea

p
ot

sc
en

e
on

th
e

C
P

U
-l
ik

e
co

n
fi
gu

ra
ti

on
.

T
h
e

b
ot

to
m

sh
ow

s
th

e
d
y
n
am

ic
m

ap
p
in

g
of

st
ag

e
in

st
an

ce
s

on
to

h
ar

d
w

ar
e

th
re

ad
s.

40 CHAPTER 4. FUTURE RENDERING ARCHITECTURES

F
igu

re
4.6:

A
gram

p
sv

iz
v
isu

alization
of

rasterizin
g

th
e

C
ou

rtyard
scen

e
on

th
e

G
P

U
-like

con
fi
gu

ration
.

T
h
e

top
sh

ow
s

th
e

q
u
eu

e
d
ep

th
s

an
d

th
e

b
ottom

th
e

m
ap

p
in

g
of

in
stan

ces
on

to
F
at

an
d

M
icro

core
th

read
s.

4.6. TUNABILITY 41

Rast
Pixel

Shade
Merge+

F
ra

m
e
 B

u
ff

e
r

Rast
Pixel

Shade

Merge

(FB)

F
ra

m
e
 B

u
ff

e
r

Figure 4.7: Initial and revised versions for the bottom of our Direct3D pipeline.

understanding high-order behavior and would not be as applicable in a real system.

To that end, we instrumented the GRAMPS runtimes to record their scheduling

decisions and queue operations and built a tool called grampsviz that let us visually

navigate the output. It can show three different timeline views: a per-core display

of which stage is resident, a stacked display of how much of the whole system is

dedicated to each stage, and a per-queue display of how many packets are available

for reserve and commit. Cross-referencing these views show us, for example, which

queues accumulate data or which singleton stages run at times when no other work is

available, both of which indicate likely places to improve the application graph design,

the scheduler, or both. Figures 4.5 and 4.6 show two examples of using grampsviz

views that summarize an entire workload execution. It can also be used interactively

to zoom the time window as far down as individual queue or scheduling operations.

4.6.2 Optimization

The GRAMPS concepts/interfaces permit designers to create graphs that do not run

well, and even good graphs can profit from tuning. For example, our initial Direct3D

graph—which used a single Shader stage to handle both PS and OM—exhibited a

large queue memory footprint (see Figure 4.7).

Although our first Direct3D graph used a queue set to respect OM ordering re-

quirements while still enabling parallel processing of distinct screen space image tiles,

this formulation caused all PS work for a single tile to be serialized. Thus, the graph

suffered from load imbalance (and corresponding queue backup) when one tile—and

thus one subqueue— had a disproportionate number of fragments. Separating PS

42 CHAPTER 4. FUTURE RENDERING ARCHITECTURES

and OM into unique graph stages and connecting these stages using a queue set al-

lowed shading of all fragments—independent of screen location—to be performed in

parallel. This modification reduced queue footprints by over two orders of magnitude.

Similarly, in the ray tracer, limiting the maximum depth of the queue between

the sampler and the camera while leaving the others effectively unbounded reduced

the overall queue footprint by more than an order of magnitude.

In the same vein, although the general graph structure is the same across our

two simulation configurations, we made slight tuning customizations as a function

of how many machine thread slots were available. In the GPU-like configuration of

Direct3D/Extended Direct3D, we increased the number of OM input subqueues to

enable additional parallelism. We also set the capacities on several critical Direct3D

queues and, as mentioned above, the ray tracer’s sample queue based on the maximum

number of machine threads.

4.7 Conclusion

This case study has introduced the first validation of GRAMPS: successful formu-

lation of a conventional rasterization pipeline as an application while also enabling

extensions and, in the case of the ray tracer, outright replacement. Despite enabling

this flexibility, our prototypes performed well in simulation. The application graphs

were able to expose/our GRAMPS runtimes were able to capture high parallel utiliza-

tion. At the same time, with static priorities and basic implementations, GRAMPS

kept the queue footprints, i.e., necessary inter-stage buffering, to very practical levels.

Even the order sensitive, and thus footprint hungry, Direct3D graph was contained

to 70KB per core (less than 18KB per hardware thread) on the CPU-like architecture

and 285KB per core (less than 15KB per hardware thread) on the more parallel GPU-

like architecture. These are perfectly plausible/reasonable resource needs. Finally,

we described some tools for understanding how GRAMPS runs an application graph

and a few examples of major application improvements to which those led us. In

sum, we find these results encouraging, but confined to one domain—rendering—and

to simulated—and thus simplified—hardware. The next case study will target both

4.7. CONCLUSION 43

of these limitations.

44 CHAPTER 4. FUTURE RENDERING ARCHITECTURES

Chapter 5

Current General-Purpose

Multi-cores

This chapter presents a second case study of GRAMPS. After studying GRAMPS on

simulated rendering-oriented platforms, we investigated how it applied to current gen-

eral purpose multi-core CPUs and accordingly incorporated many new applications.

This chapter focuses on our experiences specifically with GRAMPS and the next de-

scribes extending our implementation to compare with schedulers from other CPU

parallel programming models. Much of this material is currently under submission

for separate publication [42].

5.1 Introduction

We selected our second case study to complement the first in two ways: to build

an implementation for real, non-simulated, systems and to consider general purpose

hardware together with a broader set of problem domains. Thus, we shifted our

focus to multi-core CPUs. As mentioned earlier, performance increases in current

CPU designs stem heavily from exposing increasing numbers of cores, and sometimes

multiple threads per core, in a single processor and provide a natural target for

GRAMPS.

In this chapter, we describe our multi-core GRAMPS implementation and the

45

46 CHAPTER 5. CURRENT GENERAL-PURPOSE MULTI-CORES

results from the diverse array of applications we built for it running on an 8-core,

16-thread machine, cast in terms of our design goals for GRAMPS:

• Broad application scope: Nine applications (13 distinct configurations) drawn

from rendering, physical simulation, sorting, MapReduce, CUDA samples, and

StreamIt.

• Multi-platform applicability: A pthreads plus work-stealing GRAMPS run-

time for multi-core CPUs.

• Performance: Improvements over scheduling for simulated hardware that han-

dle real-world constraints and still produce good scale-out parallelism with

queue footprint management.

• Tunability: A journaling mechanism for supporting grampsviz and profiling

GRAMPS runtime operations.

5.2 Application Scope

In keeping with the more general hardware than the previous study, we extended our

application set well beyond rendering. Additionally, we intentionally included some

programs and algorithmic formulations from examples for existing parallel program-

ming models. Not only does that help ensure our problem domains are valuable, but

it will allow us to examine GRAMPS’s suitability and overlap compared to other

models in the next chapter.

Table 5.1 summarizes the origin and important characteristics of the applications

we built. It is important to emphasize that these are not at all the same underlying ap-

plication structures that happen to manifest in a range of domains: these applications

vary significantly. This is clearly visible in Figure 5.1, which shows the application

graphs for a diverse sampling of our workloads. Particular points of interest in these

graphs are highlighted in the detailed descriptions below.

Specific applications and workloads (configurations) are as follows:

5.2. APPLICATION SCOPE 47

Workload Origin
Graph % Work Inter-Stage

Regularity
Complexity in Shaders Parallelism

raytracer GRAMPS Medium 99% Yes Low
spheres GRAMPS Medium 33% Yes Low

histogram-red / com MapReduce Small 97% / 99% No / Yes Low
lr-red / com MapReduce Small 99% No / Yes High

pca MapReduce Small 99% No High
mergesort Task Medium 99% Yes High / Low*

srad CUDA Small 99% No High
gaussian CUDA Small 99% No High

fm StreamIt Large 43% Yes High
tde StreamIt Huge 8% Yes High

Table 5.1: Application characteristics. Inter-stage parallelism denotes the existence of
producer-consumer parallelism at the graph level. *Mergesort is regular in execution
time but irregular in queue access.

• raytracer: The packetized ray tracer from [41] (and the previous chapter).

We run it in two configurations: with zero reflection bounces, in which case

it is a pipeline, and with one bounce, in which case its graph has a cycle (see

Figure 4.2).

• spheres: A rigid body physics simulation of spheres from [42]. It uses a dy-

namic queue set to perform collision detection: each subqueue corresponds to

a voxel in a 3D grid, with its (x, y, z) position used as the subqueue key. The

Make-Grid stage determines which voxel(s) each sphere overlaps and routes

them correctly, effectively turning the queue set into a sparse grid represen-

tation (only subqueues with at least one sphere will be created). The rest of

the stages compute all of the intra-voxel collisions, resolves them, and uses the

resolved velocities to compute updated positions and velocities. The position

updates for spheres uninvolved in any collisions happen in Collide-Cell. The

application graph for spheres can be seen in Figure 5.1. Note that with large

spatial volumes and corresponding grids, Make-Grid can severely stress dynamic

subqueue creation, which in turn severely stresses Thread-stage instancing for

Collide-Cell.

• histogram, lr, pca: Three MapReduce applications described in [42] and

48 CHAPTER 5. CURRENT GENERAL-PURPOSE MULTI-CORES

Split ReduceMap
Combine

(Optional)

(a) MapReduce

Split
Make

Grid
Integrate

Hits

Collide

Cell

Resolve

Collision

(b) spheres

Serial

SortPartition Combine Merge

(c) mergesort

Task

Generator
SRAD 1 Task

Generator
SRAD 2

Task

Generator
SRAD 3 Task

Generator
SRAD 4

(d) srad

Source

Round

Robin

Subtracter

Sink

Low Pass

Filter

FM

Demodulator

Duplicate

Duplicate

Low Pass

Filter

Low Pass

Filter

Amplifier

Round

Robin

Filter

Round

Robin

Subtracter

Duplicate

Low Pass

Filter

Low Pass

Filter

Amplifier

...

...

(e) fm

Figure 5.1: GRAMPS graphs for MapReduce, spheres, fm, mergesort, and srad.

originally from [37]: image histogram, linear regression, and PCA. As with the

rendering pipelines, we built a MapReduce ‘runtime’ as a GRAMPS application

(the graph it generates for a single MapReduce pass is shown in Figure 5.1). This

was the motivating case for offering In-Place queue bindings and for Shader-

stage parallel reductions. Many MapReduce applications, including histogram

and lr use a Reduce kernel that is commutative and associative, and can thus be

performed incrementally as values are produced. This option, which MapReduce

refers to as Combine, has two big benefits: better load-balancing as values can

be freely Combined in parallel and drastically smaller queues as values no longer

need to be buffered in their entirety until the entire input collection is available

for Reduce. We run histogram and lr in two forms: with a combine stage and

reduce-only. pca is interesting in that it is actually two pass: it runs successive

Map stages—one to compute per-row means and one to compute covariance

between rows—and uses no Reduce (or Combine) stages.

5.2. APPLICATION SCOPE 49

• mergesort: A parallel mergesort implementation using Cilk-like spawn-sync

parallelism. It runs by partitioning the input data into fixed sized chunks (ala

tasks), sorting each chunk in an independent Shader instance, noting when two

adjacent chunks are sorted and can be combined, and then merging them. Due

to its highly recursive nature, its graph, shown in Figure 5.1, contains two nested

loops.

• srad: Speckle Reducing Anisotropic Diffusion clears speckled images while pre-

serving edge information. This program, is ported from the Rodinia [9] het-

erogeneous benchmark suite. Its graph, shown in Figure 5.1 demonstrates the

general pattern of casting Breadth-First algorithms in GRAMPS. It is essen-

tially a chain of kernels separated by queues that are only used as barriers—no

packets ever flow through them, they just serve to signal the downstream when

a kernel is complete. Instead, the kernels process their data through read-write

mapped buffers, just like CUDA and OpenCL programs. Each kernel is pre-

ceeded by a Task-Generator stage. These stages produce disjoint index ranges

into the read-write buffers that are used to instance the Shader stages. One

future enhancement to GRAMPS that we have considered is a mechanism to

include simple input subdivision information when defining a Shader stage, so

that GRAMPS can automatically function as a Task-Generator.

• gaussian: An example from the CUDA SDK [30]. Like srad, an entirely data-

parallel workload, whose graph is laid out very similarly.

• fm: The FM Radio benchmark in the StreamIt suite [43]. Like many streaming

applications, it is highly producer-consumer and has an elaborate graph, shown

in Figure 5.1. After an initial preamble, the input signal is split into frequency

bands, each of which passes through its own copy of the core processing graph,

and is finally merged and filtered back into a single output signal. Like the Di-

rect3D pipeline in the previous study (Section 4.3.1, Figure 4.1) the application

setup code programmatically replicates the repeated chunks of the graph (the

per-frequency-range processing).

50 CHAPTER 5. CURRENT GENERAL-PURPOSE MULTI-CORES

• tde: Also from the StreamIt benchmark suite [16], this is the Time Delay

Equalization phase of GMTI (a radar-processing front-end). Like fm, its graph

is highly complex, highly producer-consumer parallel, and built primarily from

programmatically replicated subgraphs (in this case, parallel FFTs). In fact, it

is our least Shader-based application graph (see Table 5.1) and instead derives

the majority of its parallelism from overlapping its 380(!) Thread stages.

5.3 Multi-platform (Implementation)

There are many different potential strategies for designing a GRAMPS runtime to run

on general purpose CPUs. We did not attempt to survey the possibilities exhaustively,

relying upon our intuitions to guide the high-level design and only experimenting

where problems developed. This happened most prominently when implementing

dynamic queue sets, with which we tried many variations as described below.

At its heart, our multi-core GRAMPS implementation is a multi-threaded runtime

with work-stealing for load distribution/balancing. It creates one pthread per hard-

ware slot (core/Hyper-Thread) and multiplexes application stages onto them with a

user-level scheduler. To minimize confusion with GRAMPS Thread stages, the text

will use ‘pthread’ throughout to refer to kernel threads.

5.3.1 Data Queues

In this version, GRAMPS data queues are built as standard parallel queues. Each

subqueue has a shared head and tail pointer, protected by ticket locks [26], and

updated by any pthread that reserve’s or commit’s to it.

There are two significant details about our implementation of dynamic queue sets:

sparse key resolution and memory allocation. With dynamic queue sets, the applica-

tion indexes subqueues using sparse keys that the runtime converts into dense indices

as soon as it enters reserve or push. Since lookup is much more frequent than new

subqueue creation and lookups, read-only operations, can occur in parallel, we ex-

pected a straightforward hash table to scale well. We were surprised at the overheads

5.3. MULTI-PLATFORM (IMPLEMENTATION) 51

we saw with both STL [29] and TBB [21] containers. We ended up employing a

two-level approach: a concurrent hash map from TBB that all pthreads shared and

thread-local (unlocked) STL hash tables for each pthread that cached mappings after

their first resolution in the shared table.

Despite the TBB “scalable allocator” and low rate at which new subqueues, and

hence new mappings, were created, we still saw significant memory allocation over-

heads. We side-stepped the problem with slab-based memory preallocation: we added

optional calls that a GRAMPS application could use to provide hints to how many

dynamic subqueues and Thread stage instances it expected and made the runtime

pre-allocate correspondingly sized pools of memory to use until/unless they were ex-

hausted. In the process of development, we experimented with many permutations

of single and two-level, STL and TBB hash tables as well as pre-allocation, the TBB

scalable allocator, and the default STL allocator. Of all combinations, this design

worked best. We believe the best solution ultimately may be a specialized single-

level shared hash table with lock-free atomic updates and lookups, and that takes

advantage of the fact that mappings are never deleted.

We added one optimization for applications that make extensive use of regular

queues (as opposed to queue sets). An application can tag a queue as ‘balanced’,

in which case the runtime implements it as a queue set with one subqueue per

pthread and transparently routes queue operations to the subqueue corresponding

to the pthread on which they run. This significantly reduces contention on the queue

accesses for raytracer.

5.3.2 Task Queues

Unlike the periodic scheduler and dispatch of the simulated implementations, each

pthread in the multi-core runtime selects its stage/instance to execute from task

queues. Specifically, it is based upon the non-blocking ABP task-stealing algorithm [3]

using Chase-Lev deques [8]. However, unlike most task systems, instead of one task

queue per pthread, the runtime has one task queue per priority per thread, where

52 CHAPTER 5. CURRENT GENERAL-PURPOSE MULTI-CORES

priorities are assigned exactly as in the preceding chapter. The details of the schedul-

ing policies—when/how tasks are generated and preempted—are given below in Sec-

tion 5.4.1.

5.3.3 Termination

One tricky, but crucial, piece of the multi-core GRAMPS runtime is handling stage

completion and propagating it down the graph. When a stage finishes, the runtime

decrements the count of live producers for each of its output queues and then enqueues

a task for each of its Shader and blocked Thread consumers as if an output commit

had happened. This causes GRAMPS, when those tasks are scheduled, to check the

input queues for those stages. Thread stages, as mentioned in Section 3.6, receive a

short reservation once all of their producers are done and explicitly yield control back

to the runtime once they are done in turn.

Shader stages require more complicated handling, since they are instanced auto-

matically and can have many concurrently live copies. When the multi-core runtime

finds a Shader task, but no available input and the upstream stage is done, it marks

the input subqueue as done and decrements the number of live input subqueues. The

Shader task that decrements the number of live subqueues to zero marks the stage

itself as ‘finishing’. For each Shader stage, the runtime maintains an atomic counter

of the number of currently dispatched instances and the number of pthreads that

have partially coalesced push outputs for it. When the instance counter reaches zero

for a stage that is ‘finishing’, if there are no outstanding pushes, then it becomes

done. If there are outstanding pushes, the last pthread to flush them will mark the

stage as done. This will happen promptly because there will be no new tasks gen-

erated for this stage: a pthread flushes whenever it dequeues a task for a new stage

or goes idle. While this distributed state machine required careful reasoning to con-

struct, it detects Shader stage termination with neither locks nor support for explicit

pthread-to-pthread messaging.

5.4. PERFORMANCE 53

5.4 Performance

5.4.1 Scheduling

Recall, as in the prior chapter, that our key performance mantra is, “Maximize ma-

chine utilization while keeping queue footprints small”, that our focus for utilization

is scale-out without forgetting scale-up, and that this is fundamentally a scheduling

consideration. In the multi-core GRAMPS implementation, it amounts to determin-

ing when to create tasks and when to preempt. These are similar to the simulated

study, but the greater complexities of reality necessitate some improvements.

Task Creation: The multi-core GRAMPS scheduler generates tasks in a relatively

unsophisticated way. When output is commit’ed to a data queue, one task is gen-

erated for each consuming Shader stage and blocked Thread stage. These tasks

indicate which stage and input subqueue to examine, but not a specific assignment

of work. Rather, the runtime attempts to satisfy the stage’s input reservation (or

pre-reservation) when it dequeues the task and discards tasks that prove spurious

(which happens rarely).

Preemption: Preemption refers to changing which stage a given pthread is exe-

cuting, not just which task: multiple back-to-back tasks for the same Shader stage

are not considered preemptions. As mentioned above, this runtime employs the same

static per-stage priorities (favoring ‘later’ stages in the graph over ‘earlier’ ones) as

both of the simulated runtimes (Section 4.5.1). It also checks for preemption at the

same points: on reserve and commit for Thread stages and between packets for

Shader stages.

However, real machines lack the simplifications made in simulation. There is a

tension between promptly switching stages when higher priority tasks are generated

and amortizing the costs of preemption. We refer to too-aggressive switching among

stages as ‘ping-ponging’. In addition to its low-level costs (e.g., user level context

switching, flushing of partially coalesced push packets), ping-ponging can severely

impact load-balancing. Consider the singleton producer → Shader consumer idiom

54 CHAPTER 5. CURRENT GENERAL-PURPOSE MULTI-CORES

T0 T1

Core 0

T0 T1

Core 1

T0 T1

Core 2

T0 T1

Core 3

Core i7 (Nehalem) Processor 0

T0 T1

Core 0

T0 T1

Core 1

T0 T1

Core 2

T0 T1

Core 3

Core i7 (Nehalem) Processor 1

Figure 5.2: Our two quad-core HyperThreaded test system.

described in Section 3.6: if the producer is preempted as soon as it commit’s any

output, then no other pthread will have work to do until it incurs the expense of

stealing the producer and loading its context (after which that pthread will rapidly

preempt it, too and perpetuate the problem). There are similar problems switching

back and forth between a Shader producer and consumer stages. These realities meant

rigid adherence to switching to the highest static priority stage was unreasonable.

Instead, the multi-core GRAMPS scheduler avoids ping-ponging by applying a

low watermark below which it does not preempt (as long as the current stage remains

runnable). When a Thread stage commit’s, the runtime compares the number of total

tasks available in that pthread’s task queues against the threshold. This gives the

pthread time to accumulate some downstream work and amortize preemption. Also,

crucially in the singleton producer case, it gives other work-poor pthreads a chance

to steal the new work, which in turn allows the producer pthread to run longer

before reaching its watermark. Similarly, when a Shader finishes its post-commit, the

scheduler checks the number of tasks that stage has run in a row. Below the low

watermark, the pthread attempts to dequeue more tasks of the same priority before

checking any others. We implemented configurable per-stage watermarks, but found

that in practice a default global value of twice the number of cores/pthreads worked

well.

5.4.2 Evaluation

We used a 2-socket system with quad-core 2.66 GHz Intel Xeon X5550 (Nehalem)

processors to conduct our study (Figure 5.2). With Hyper-Threading, the system

5.4. PERFORMANCE 55

2 4 6 8 10 12 14 16
Hardware Threads

0

2

4

6

8

10

12

14

16

Pa
ra

lle
l S

pe
ed

up

ray-0
ray-1
spheres
lr-red
lr-com
hist-red
hist-com
pca
msort
srad
gaussian
fm
tde

Figure 5.3: Application speedup on an 8-core, 16-thread system.

delivered a total of 8 cores and 16 hardware threads. Its memory hierarchy had 256KB

per-core L2 caches, 8MB per-processor L3 caches, and 24GB of DDR3 1333MHz

memory. The processors communicated through a 6.4GT/s QPI interconnect. As

software, we used 64-bit GNU/Linux 2.6.33, with GCC 4.3.3. We ran all of our

experiments 10 times and report the averages as our results. This rest of this section

focuses on the execution/utilization aspect of the results. The memory/footprint

data, which is in fact good, is best understood in the context of alternative scheduling

strategies and therefore deferred to the comparison and discussion in the next chapter.

Scalability

With a real system, we were able to measure scale-out parallelism directly. Figure 5.3

shows the scaling of each application as we configure multi-core GRAMPS to use

from 1 to 16 pthreads. The knee that consistently occurs at 8 pthreads is where

all the physical cores were filled and the runtime started provisioning the second

56 CHAPTER 5. CURRENT GENERAL-PURPOSE MULTI-CORES

ra
y-

0

ra
y-

1

sp
he

re
s

lr-
re

d

lr-
co

m

hi
st

-r
ed

hi
st

-c
om pc

a

m
so

rt fm td
e

sr
ad

ga
us

si
an

0

20

40

60

80

100

No Work
Sched
Queue
App

Figure 5.4: Execution time profile (8 cores, 16-threads). ‘No Work’ represents the
time a pthread had no local work and was either idle or trying to steal.

Hyper-Thread on cores.

Overall, all of the workloads besides spheres scaled out well. With more cores,

srad and gaussian both started to become bound by cache and memory band-

width; they are ports of designs for GPUs, which have significantly more bandwidth.

spheres is a particular challenge. As mentioned earlier, it stresses Thread stage

instancing: even when represented sparsely, there are almost 5000 grid cells that

overlap with objects in the simulation (and thus instances). We have not focused on

optimizing contention in our Thread instancing at that scale.

Utilization

Good parallel scalability still does not eliminate the importance of scale-up, i.e., how

much time is spent running ‘useful’ code. To investigate, we profiled our workloads.

Figure 5.4 displays the results from running with all 16 hardware threads, grouped

into four categories: application code itself, queue manipulation in the runtime (e.g.,

reserve, commit, push, etc.), scheduling, and without work (e.g., idling or trying to

steal tasks from other pthreads).

5.5. TUNABILITY 57

The vast majority of execution time is spent in application or queue time, both

‘useful’. Execution graphs with heavy amounts of communication spend time access-

ing their data queues, but this is still productive: these applications inherently need

to communicate. Using GRAMPS’s data queues to synchronize means that none of

our application code has locks. If it had to roll and manage its own shared data

structures internally, then time would have to be spent there.

As expected from the scalability results, work is plentiful without much imbalance,

so ‘No Work’ time is not much of a factor outside of spheres. Additionally, scheduling

time is minimal: most workloads spent less than 1% of the time in the scheduler. Even

tracking the tens of stages in fm (and thousands of instances in spheres) took less

than 10% of the elapsed time.

In summary, except for spheres, the rest of our applications—regular and ir-

regular; data-parallel, task-parallel, and pipeline-parallel; Shader-heavy and Thread-

heavy—scaled well with GRAMPS, had good work distribution, and had low schedul-

ing costs. spheres stresses a particular feature of the programming model to an

extreme far past where we have delved into it or done any tuning.

5.5 Tunability

As is evident from the above data and discussion, we included instrumentation and

configuration options for our multi-core GRAMPS implementation to aid explaining

and improving performance. In addition to configuration knobs for parameters such

as the scheduling watermarks, number of pthreads, and amounts of memory to pre-

allocate, it has two significant systems for recording run-time data: counters and the

journal.

The counters are a lightweight scheme any part of multi-core GRAMPS can use for

accumulating integer values (e.g., number of commits, or tasks stolen at a time). After

a run, the minimum, maximum, average, and standard deviation are all reported. The

counters, in conjunction with the lightweight processor cycle counter, underpin our

profiling.

The journal, by contrast, is a mechanism for recording bulkier and freer-form data

58 CHAPTER 5. CURRENT GENERAL-PURPOSE MULTI-CORES

for post-processing. Callsites specify a particular journal opcode, but otherwise up to

five words of arbitrary data. Each pthread tags journal entries use the cycle counter,

but accumulates them in static thread-local buffers until they fill, at which point they

are spilled to disk and reset. This reduces the overhead of the journal sufficiently for

its data to be useful for tuning and diagnosis. It is enough that we disable the journal

for performance runs, however. Nevertheless, the journal is very useful for gathering

a detailed picture of execution. We use it, among other things, for recording data

to enable a ported version of grampsviz from the simulator environment. In fact,

we extended grampsviz (and the multi-core runtime) so that the queue view could

also include any unflushed data from push that was buffered for coalescing and, with

detailed instrumentation enabled, the core view could overlay a visual profile of where

in the application or GRAMPS-runtime code each pthread was executing.

5.6 Conclusion

This case study has complemented the limitations of the previous one. Its hardware

is less futuristic and less heterogeneous, but has the enormous validating property

of being real and representative of general purpose many-core architectures available

today. Our abstractions and scheduling policies help up well, but unsurprisingly prof-

ited from a few enhancements—particularly the scheduling watermarks that extend

entirely fixed priorities to amortize out ping-ponging.

In addition, this study greatly broadened the origins and domains of applications

formulated for GRAMPS to draw from other programming models and span a range

of problems including sorting, image and signal processing, physical simulation, and

MapReduce. With the exception of one case that stressed a code path far past its

design, they demonstrated both scale-out performance across multiple multi-threaded

cores and scale-up performance, spending the large majority of execution time on

useful work. We have deferred a detailed investigation of queue footprint to the next,

final, case study, where it can benefit from comparison data from alternative policies.

Chapter 6

Comparing Schedulers

This chapter presents the third case study. We use the multi-core GRAMPS run-

time from the previous study as a testbed for implementing the scheduling policies of

Task-Stealing, Breadth-First, and Static parallel programming models alongside our

GRAMPS scheduler. Then, we analyze how our applications behave using the differ-

ent schedulers in terms of both performance and footprint. As with the previous study,

much of this material is currently under submission for separate publication [42].

6.1 Introduction

Unlike the first two case studies, our third does not introduce a new GRAMPS im-

plementation. Instead, we round out our understanding of GRAMPS by reusing the

multi-core implementation from the previous study to compare GRAMPS with the

other general purpose programming models described in Chapter 2.

There are many important dimensions in to evaluate a programming model: syn-

tax, toolchain, ease of use, etc. We focused on runtime resource management and

scheduling. These shape key factors of execution: performance (execution time), scal-

ability, memory footprint, and locality. In order to hold as many factors as constant as

possible, we conducted the comparison entirely with internal changes to the multi-core

runtime. We reused the applications from Chapter 5 entirely unmodified. Note that

this, therefore, is a study of specific application/algorithmic formulations of various

59

60 CHAPTER 6. COMPARING SCHEDULERS

problems rather than the highly subjective (and less apples-to-apples) comparison of

a ‘best’ or ‘preferred’ formulation per scheduler. Instead, we rely upon the fact that

we drew from representatives of each of the models when selecting our applications

initially. Thus, each scheduler had at least one case aligned with its strengths.

In this chapter, we describe how each scheduler was cast in terms of our multi-core

GRAMPS runtime, go through their results handling our applications, and discuss

the strengths and weaknesses they reveal.

6.2 Representing other Programming Models with

GRAMPS

We implemented three new operating modes for our runtime: Task-Stealing, Breadth-

First, and Static. For each, we developed an alternative scheduler and tweaked the

data queues as described below. Figure 6.1 shows images from grampsviz depicting

how each scheduler mapped stages to pthreads while running raytracer. GRAMPS

and Task-Stealing look similar, which makes sense as both are task-based inter-

nally and load-balance by adaptively moving tasks among pthreads. As we will see,

GRAMPS and Task-Stealing generally resemble each other in most tests, diverging

the most when tasks are very small or stage priorities and/or queue capacity limits are

significant. Breadth-First, however, is strikingly distinct. Its algorithm—a succession

of kernels (stages), one-at-a-time—is immediately visible. Finally, while Static is less

apparent, its fixed rotation among the stages manifests clearly as periodic patterns

that are not present with the two adaptive schedulers.

Task-Stealing: As discussed in Chapter 2, the generic task-stealing model is fo-

cused on lightweight task creation and dispatch. It eschews functionality that might

add expense, such as priorities. Since our GRAMPS runtime was based on task-

queues, our Task-Stealing mode is similar, but has three key differences: unbounded

capacity data queues; no task priorities; and preemption based upon child task cre-

ation rather than graph priorities and watermarks. It uses the same task-stealing

6.2. REPRESENTING OTHER PROGRAMMING MODELS WITH GRAMPS 61

(a
)

G
R

A
M

P
S

(b
)

B
re

ad
th

-F
ir

st

(c
)

T
a
sk

-S
te

al
in

g
(d

)
S
ta

ti
c

F
ig

u
re

6.
1:

G
ra

m
p
sv

iz
ou

tp
u
t

sh
ow

in
g

h
ow

ea
ch

sc
h
ed

u
le

r
b
eh

av
es

ru
n
n
in

g
ra

y
tr

a
ce

r
(e

ac
h

h
or

iz
on

ta
l
b
ar

co
rr

e-
sp

on
d
s

to
a

p
th

re
ad

an
d

ea
ch

co
lo

r
to

an
ap

p
li
ca

ti
on

st
ag

e
an

d
im

ag
e

w
id

th
is

p
ro

p
or

ti
on

al
to

ex
ec

u
ti

on
ti

m
e)

.

62 CHAPTER 6. COMPARING SCHEDULERS

algorithm and Chase-Lev deques as GRAMPS mode [3, 8], but with a more conven-

tional single queue per pthread. Local enqueues and dequeues happen in LIFO order

from the front of the deque with steals from the back. Again, there can be many

variants in implementation choices, but our design captures the gist of performant

task-stealing runtime systems.

With no scheduling awareness of stages, preemption is purely task based. To

emulate the depth-first policy of Cilk [15], Thread stage producers are preempted

after committing a fixed number of output packets (currently 32). A pure depth-first

policy would require context-switching the producer every time it commits an output

packet, which is expensive. This approach retains most of the benefits of depth-first

while amortizing context-switching overheads.

Breadth-First: This mode is a complete departure from GRAMPS. In pseudo-

code, it runs an application graph as follows:

while (not done and numPasses < max) {
all pthreads:

while (curStage has input available) try to run curStage

barrier

pthread 0:

curStage++

if (curStage is the last in the graph) {
if (all stages are done) terminate()

curStage = firstStage

numPasses++

}
}

Essentially, starting from the inputs to the graph, all pthreads run the current

stage as long as it remains runnable, then they advance in lock-step to the next

stage. Some of our applications have cycles in their graphs so the scheduler will reset

to the top of a graph finite number of times if necessary. As with Task-Stealing,

Breadth-First mode does not enforce any bounds on the depths of the data queues.

Static: At execution time, the Static scheduler is the simplest of all. When the

runtime initializes, it reads a specified schedule file which enumerates a sequence of

stages per pthread. At run-time, each pthread cycles through its schedule until all

6.3. EVALUATION 63

stages are done, skipping stages that are not runnable and going back to the top as

necessary until finished.

Generating the static schedules, however, proved not to be simple at all. We

experimented with multiple stream scheduling algorithms, but it was not a trivial

process. Without hand tweaking, these algorithms frequently failed to generate viable

schedules for more irregular applications (e.g., variable outputs/push queues) and

more complicated graphs (e.g., loops). As in streaming systems, we also needed to

generate configuration-specific schedules for applications that varied in response to

workload parameters such as the image to process, output resolution, data range per

packet, etc. Finally, this Static scheduler design—running an input schedule in a

loop—inherently assumed data is streaming through and cannot handle idioms such

as barriers or all-at-once queue consumption. As a result, we used a limited set of

workloads for our Static scheduler experiments.

We created the schedules for the workloads we did use according to two state-

of-the-art static scheduling algorithms: SGMS and SAS. Stream Graph Modulo

Scheduling (SGMS) is a recently proposed scheme that bin-packs stages based on

an execution time estimate, where each bin denotes a hardware thread, duplicates

stateless kernels as necessary for performance/utilization, and software pipelines the

results for a final schedule [24]. It was efficient with our larger graphs, but generated

degenerate/useless schedules when there were fewer stages. In those cases, we used

the traditional Single Appearance Schedule (SAS) [25], which calculates the relative

frequency of each kernel/stage at steady state and replicates that schedule on all

pthreads (essentially, the strip mining strategy described in [12]).

6.3 Evaluation

We ran our evaluation on the same 8-core, 16-thread system that we used to evaluate

GRAMPS (Chapter 5). We compared GRAMPS, Task-Stealing, and Breadth-First

first, and then Static separately because of its smaller set of schedules.

64 CHAPTER 6. COMPARING SCHEDULERS

0

20

40

60

80

100

120

140

Pe
rc

en
ta

ge
 o

f T
im

e

G G G G G G G G G G G G GT T

261%

T T T T T T T T T T TB B

214%

B B B B B B B

953%

B

785%

B B B

ra
y-

0

ra
y-

1

sp
he

re
s

lr-
re

d

lr-
co

m

hi
st

-r
ed

hi
st

-c
om pc

a

m
so

rt fm td
e

sr
ad

ga
us

si
an

No Work
Sched
Queue
App

Figure 6.2: Execution time profile (8 cores, 16-threads) of applications running the
GRAMPS, Task-Stealing, and Breadth-First schedulers (left to right).

6.3.1 Execution Time

Figure 6.2 displays the same sort of profile as Figure 5.4, but includes the breakdowns

for GRAMPS, Task-Stealing, and Breadth-First. The data is using all 16 hardware

threads and scaled relative to GRAMPS. To a first order, all three exhibited the

same profile for many applications. This is unsurprising: all the applications are

parallelism-rich and most are easy to keep well-balanced. However, as will be dis-

cussed below, the three are not so similar in how much queue space they consumed.

There were a few workloads where the schedulers were visibly different. The

Breadth-First schedulers suffered load-imbalance (larges amounts of ‘No Work’ time)

in multiple ways from its inability to overlap stages. It could not exploit the inter-

stage/pipeline parallelism in the Thread-stage heavy spheres, fm, and tde: while

one hardware thread runs a Thread stage, all the others sit idle. In other cases, intra-

stage irregularity was the problem: some raytracer stages left most hardware threads

idle while a few long running Shader instances completed. The irregular distribution

of values to keys in the in-place Shader of histogram-combine also exacerbated

contention relative to schedulers that could co-mingle instances from both the map

6.3. EVALUATION 65

�����������
������������
	��
������

�� ��� ���� ��
��������������
��������� !� "#$�%���������&

'()*)+,- -./,)0 1)/ ()23 ,2-4
Figure 6.3: Relative execution time running mergesort with a custom Task-Stealing
runtime, as a function of the leaf task size.

and combine stages.

Task-Stealing, in turn, occasionally demonstrated higher overheads in cases where

semantic information from the graph gave GRAMPS an advantage. Its depth-first

heuristic was an inadequate alternative to GRAMPS’s priorities and stage-based pre-

emption watermarks in more complicated graphs (e.g., the complicated fan-out and

fan-in structure of fm and tde). Similarly, it ping-ponged heavily on histogram-

combine and spheres, which then increased contention accessing the subqueues and

creating Thread stage instances.

Task Size Sensitivity

As just described, failing to utilize application graph information can be a disadvan-

tage for Task-Stealing. However, it can also be an advantage. Task-Stealing program-

ming models ignore application structure, priorities, etc. by design, not foolishness.

Ignoring them streamlines scheduling and recall that Task-Stealing emphasizes very

low per-task overheads.

To highlight this trade-off, we built a stripped-down Task-Stealing runtime that

66 CHAPTER 6. COMPARING SCHEDULERS

ra
y-

0

ra
y-

1

sp
he

re
s

lr-
re

d

lr-
co

m

hi
st

-r
ed

hi
st

-c
om pc

a

m
so

rt fm td
e

sr
ad

ga
us

si
an

1

10

100

Si
ze

 v
er

su
s

G
RA

M
PS

217x

GRAMPS
Task-Stealing
Breadth-First

Figure 6.4: Relative data queue depths for GRAMPS, Task-Stealing, and Breadth-
First. Breadth-First tends to be huge in comparison (note the log scale).

removes data queues and directly exposes tasks and ported mergesort to it. We

then varied the size (i.e., number of elements) of the serial sort that constitutes its

leaf tasks and compared the performance of GRAMPS and the custom Task-Stealing

runtime.

As Figure 6.3 shows, attempting to exploit application knowledge is not free. Pure

Task-Stealing significantly outperformed GRAMPS on fine-grained (small) tasks.

GRAMPS caught up relatively quickly, however, reaching 75% of Task-Stealing’s

performance when sorting 512 elements per task and 94% with 1024. This makes

sense, since, as shown in Figure 6.2, using the application graph to schedule was

neutral or positive for all of our workloads. And, it turned out to be very helpful for

reducing queue footprints.

6.3.2 Footprint

Recall that containing working set sizes is an important design point of the GRAMPS

scheduler, as it affects locality (caching effectiveness), memory bandwidth, and stor-

age requirements. Figure 6.4 shows the data queue footprint of our workloads in

6.3. EVALUATION 67

ra
y-
0

ra
y-
1

sp
he

re
s

lr-
re
d

lr-
co
m

hi
st
-r
ed

hi
st
-c
om pc
a

m
so
rt fm td
e

sr
ad

ga
us
si
an

0

50

100

150

200

250

Pe
rc
en

ta
ge

GRAMPS
Task-Stealing

(a) Packets

ra
y-
0

ra
y-
1

sp
he

re
s

lr-
re
d

lr-
co
m

hi
st
-r
ed

hi
st
-c
om pc
a

m
so
rt fm td
e

sr
ad

ga
us
si
an

0

50

100

150

200

Pe
rc
en

ta
ge

GRAMPS
Task-Stealing

(b) Tasks

Figure 6.5: Relative footprints of GRAMPS and Task-Stealing

GRAMPS, Task-Stealing, and Breadth-First modes. Specifically, it shows the aver-

age number of total packets enqueued (across all queues) during execution.

The plot is drawn to a log scale because the footprint in Breadth-First mode

usually dwarfs the others. The only exceptions are the MapReduce workloads, whose

barriers make them innately breadth-first independently of the scheduler (spheres

is very MapReduce-like in this sense). This is unsurprising. Not only does Breadth-

First produce extremely deep queues, it produces the deepest possible queue between

any two stages: each producer runs until it can run no more before its consumer is

ever scheduled.

Figure 6.5 removes Breadth-First and zooms in on GRAMPS and Task-Stealing.

Since both schedulers are task-queue-based, those footprints are shown, too.

As before, GRAMPS and Task-Stealing again often look alike. This is also un-

surprising: the preemption heuristic in Task-Stealing is meant to approximate the

prefer-consumers-over-producers behavior of GRAMPS without actually implement-

ing task priorities. However, Task-Stealing has two disadvantages: its approximation

always defers preemption until 32 tasks are generated, regardless of how work-rich

the system already is; and unbounded data queues mean Task-Stealing misses any

queue sizes set by application to throttle active stages.

In practice, this means that Task-Stealing’s heuristics worked for the simple

graphs, but deteriorated with the extended Shader producer → Shader consumer

68 CHAPTER 6. COMPARING SCHEDULERS

0

20

40

60

80

100

120

140

Pe
rc

en
ta

ge
 o

f T
im

e

GR GR GR GRSAS SAS

268%

SGMS

290%

SGMS

ra
y-

0

m
so

rt fm td
e

No Work
Sched
Queue
App

(a) Execution Time

ra
y-
0

m
so
rt fm td
e0

50

100

150

200

Pe
rc
en

ta
ge

421% 207% 836%

GRAMPS
Static

(b) Packet Footprint

Figure 6.6: Static scheduling results

chain in raytracer and the complicated graph of fm. Additionally, recall that ray-

tracer’s footprint is also highly affected by the maximum queue depths, which Task-

Stealing ignores (Section 4.6.2). Task-Stealing also had trouble with the singleton

producer → Shader consumer idiom in pca, srad, and gaussian. The inflexibility

of its deferred depth-first algorithm could not match the stage-based watermarks.

The most visible indication of Task-Stealing’s deviation from GRAMPS is the

task queue footprints. Tasks are small in absolute terms, but they are all the same

size. This means that the ratio of the task footprints indicates how many more tasks

are pending with Task-Stealing on average: often 30% and as much as 84%. Since

both schedulers had ample work to fill the machine, these extra tasks reflect work

that need not have been generated, or buffered, so soon.

6.3.3 Static

Figure 6.6 shows the execution time and data queue footprint comparisons between

GRAMPS and the Static scheduler for the four workloads for which SAS or SGMS

(and mild hand-tuning) produced viable schedules. Static underperformed GRAMPS

in all cases, for two basic reasons: static schedules are a poor match for irregular

workloads and unlike stream processors, all workloads are irregular on general purpose

machines. Even a good static schedule for a workload that is regular at the application

level must confront irregularity from the memory hierarchy, occasional OS interrupts,

6.4. CONCLUSIONS 69

and other dynamic system events that violate its assumptions.

Since their execution order is static, the schedules are fragile: they have no re-

course to recover/adjust when small imbalances form. The queue footprints show

evidence of this: the static schedules did not quite align the actual production and

consumption rates and the footprint slowly grew over successive passes (until stages

finished completely and began terminating).

At the same time, there is also not much performance gain available from elim-

inating run-time scheduling costs. For all workloads, the profiles for GRAMPS and

Task-Stealing showed minimal scheduling overheads. Therefore, dynamic schedul-

ing, at least enough to compensate for system irregularities, seems better suited to

general-purpose machines.

6.4 Conclusions

This case study has compared the resource management effectiveness of GRAMPS

and the Task-Stealing, Breadth-First, and Static canonicalizations from Chapter 2 on

a general-purpose multi-core machine. All four, in general, are able to exploit ample

parallelism to keep the hardware threads productively occupied, though Breadth-

First struggles with the more pipeline-parallel, less data-parallel, StreamIt appli-

cations. The inflexibility of both Breadth-First and Static scheduling is a serious

load-balancing disadvantage on our machine. Dynamic, adaptive, scheduling should

clearly play a role in any runtime for general-purpose hardware.

GRAMPS stands out at managing the amount of intermediate buffering con-

sumed by our workloads, that is, the depths of the data queues. As intended by the

programming model design, the multi-core GRAMPS runtime leverages its insight

into the application structure (graph, queue capacities, etc.) to do an excellent job

minimizing footprint. Breadth-First scheduling’s stage-at-a-time approach generates

extremely deep queues. Static’s inability to adjust dynamically leads to a steadily

deepening creep. Task-Stealing comes the closest, but its philosophical imperative

for lightweight task manipulation comes at a trade-off in control over queue depth.

70 CHAPTER 6. COMPARING SCHEDULERS

As the sensitivity comparison demonstrated, while GRAMPS’s more elaborate struc-

ture does introduce some execution overhead, it rapidly amortizes out at the task

granularities our applications use.

Chapter 7

Discussion

7.1 Contributions and Take-aways

This thesis has introduced the GRAMPS programming model for designing parallel

applications to match the trend in commodity computing: heterogeneous, many-core

systems. GRAMPS casts applications as execution graphs of stages and queues where

developers express the amount of automatic intra-stage parallelism among singleton

Thread, instanced Thread, and Shader stages and express hints about flow control,

where to buffer work, and synchronization with limited capacity queues and queue

sets.

In addition, through three case studies, we described GRAMPS’s viability for

implementation according to four criteria:

• Broad application scope: Three rendering pipelines demonstrated on sim-

ulated graphics hardware and nine applications, thirteen distinct configura-

tions/graphs, for general purpose hardware including graphics, MapReduce,

image processing, and stream processing.

• Multi-platform applicability: Three GRAMPS runtime implementations:

two for simulated graphics hardware–CPU-like and GPU-like—and one for ex-

isting multi-core CPU machines, tested with eight HyperThreaded cores (16

hardware threads).

71

72 CHAPTER 7. DISCUSSION

• Performance: High parallel utilization in simulation and actual scalability on

real hardware with good working set (data queue) management—in absolute

terms in simulation and in comparison to alternatives on real hardware.

• Tunability: Grampsviz for visually summarizing and interactively inspecting

scheduling and data queue behavior and examples of high impact execution

graph modifications learned from analysis.

There is a fifth high value goal/criteria for a programming model: informing

hardware designs. That is, GRAMPS should provide sufficient opportunity (and

clarity of intent) for hardware implementations to be tuned in support of it. While

we did not delve in this direction explicitly, our experiences have given us some

intuitions. In each case, we focus on the problem/opportunity rather than try to

prescribe (and presume) a particular solution:

• Efficient building blocks for many-producer/many-consumer queues. Inherently,

the operations of appending or fetching data using a buffer free from strict or-

dering requirements has relatively simple synchronization requirements. In fact,

though, implementing it with normal read/write memory, especially cache co-

herent memory, generally requires algorithms that generate a lot of unproductive

coherency traffic and sharing overheads.

• Queues/messaging primitives between ‘cores’. For heterogeneous systems to be

successful, especially across varying configurations, there must be a standard

method that runtime or application software can use for at least coarse-grained

communication. We found queues to be effective abstractions for impedance

matching: providing an asynchronous and incremental channel between op-

erations with different execution granularities, frequencies, etc. Any sort of

asynchronous messaging ability can likely be made to work, but we believe it

is crucial for software adoption that it be as standard and widely available as

possible.

• ‘Data-parallel’ units (GRAMPS Shader cores). GPUs have established the un-

deniable computing density possibilities of cores designed for data-parallelism.

7.2. FINAL THOUGHTS 73

We would like to see a few enhancements, foremost among them multi-tenancy—

the ability to have multiple co-resident Shaders—efficient mid-sized launches—

the ability to launch, in GRAMPS parlance, a few appropriately sizes packets

worth of work at a time instead of an entire chip’s worth (a middle ground

between current hardware and a single execution context at a time)—and push,

or some alternative primitive for automatic/runtime managed compacted con-

ditional data generation.

• CPUs with Shader cores. In the tradition of FPU and SIMD units, we believe

there could be a place for data-parallel cores on future CPUs. Multi-core, after

all, makes it easier for non-symmetric core distributions than multi-processing.

And, it seems likely that a point of diminishing returns exists at which, as with

FPUs, including some dedicated data-parallel cores is a big enough boost to

a broad enough set of applications that they constitute a better use of design

resources than additional conventional cores.

Finally, we compared GRAMPS’s scheduling with representatives of the three

broad categories for general-purpose programming models—Task-Stealing, Breadth-

First, and Static—on a multi-core CPU system. The results demonstrated that the

multi-core GRAMPS scheduler consistently out-performed, often greatly, the other

schedulers at keeping queues shallow without sacrificing execution performance.

7.2 Final Thoughts

In addition to the major contributions identified, we have observed a few other inter-

esting things in developing GRAMPS. The first is that, when structure is present,

exposing it explicitly helps. That is, GRAMPS’s insight into a workload from the

execution graph is central to its ability to manage it well. Additionally, we found that

sketching out at least a first draft of the graph before writing any code helped us make

better application designs. The second is that dynamic scheduling that is simple,

albeit rooted in sound principle, was surprisingly effective. There is uncountable po-

tential research, and likely dissertations, in exploring advanced scheduling techniques

74 CHAPTER 7. DISCUSSION

for GRAMPS runtimes, but our straightforward algorithms exceeded our expecta-

tions. Third, as mentioned above, queues impedance match all sorts of heterogeneity

well: different types of cores, different stages, etc. Finally, our two sharp-edged, ex-

pert features—allowing cycles in execution graphs and push, conditional output for

Shaders—paid off. In practice, our implementations handled well-behaved applica-

tions fine and we were able to express algorithms that would have been difficult to

impossible to build without them.

In closing, we see commodity hardware trending towards increasing numbers of

cores and heterogeneity. This is fueling interest in high-level parallel programming

models to ease application development and manage the underlying complexity. Ad-

ditionally, this trend makes scale-out a performance consideration to rival scale-up.

That, in turn, makes memory bandwidth and capacity increasingly precious resources.

GRAMPS, with its dual emphasis on exposing application parallelism and managing

footprint, has the potential to be highly relevant in these environments.

Appendix A

Sample GRAMPS Code

This appendix provides the code to set-reduce-keyed, one of the regression tests

for the multi-core GRAMPS runtime from Chapters 5 and 6. This simple program

exercises dynamic queue sets and instanced Thread stages: a generating stage dis-

tributes the values from 0 to N −1 among M subqueues and an instanced consuming

stage reads its entire input, sums it, and validates it against the expected result.

A.1 Application Graph Setup

The primary API for defining and launching an application graph is a set of C / C++

bindings to GRAMPS, listed in its entirety in Table A.1. Most of the functions are

self-explanatory, and also shown in the example below. GrGetPropInt/GrSetPropInt

are for querying and specifying implementation-specific parameters, for example, the

parameters for the hardware rasterizer of the simulated runtimes in Chapter 4 and

the memory preallocation hints for the multi-core runtime in Chapter 5.

Many of our programs use a simpler config-file-like interface we have built for

an interpreter called grampsh. It allows us to build graphs and experiment with

changes with less boiler-plate and no recompilation. We list both versions of set-

reduce-keyed below. The two are equivalent, except that the C++ version has had

its error checking omitted for brevity while grampsh performs it implicitly.

The graph for set-reduce-keyed is shown in Figure A.1 and is very simple.

75

76 APPENDIX A. SAMPLE GRAMPS CODE

Queues
GrQueueId GrCreateQueue(queueDesc);

void GrDestroyQueue(queueId);

Buffers
GrBufferId GrCreateBuffer(bufDesc, optionalData[]);

void GrDestroyBuffer(bufferId);

void GrMapBuffer(bufferId, window);

void GrUnmapBuffer(bufferId, window);

Stages
GrStageId GrCreateStage(threadDesc);

GrStageId GrCreateShaderStage(shaderDesc);

void GrDestroyStage(stageId);

void GrBindQueues(stage, mode, numQueues, queues);

void GrBindBuffers(stage, numBuffers, bufs[]);

Execution/Launch
GrWaitId GrSetRunnable(numStages, stages[]);

void GrWait(graphId);

Miscellaneous Configuration
int GrGetPropInt(index);

void GrSetPropInt(index, value);

Table A.1: The GRAMPS application graph API

Generate
Reduce−

Huge

Figure A.1: Application graph for set-reduce-keyed.

A.1. APPLICATION GRAPH SETUP 77

As mentioned, this program is designed to test dynamic queue sets and instanced

Thread stages. Thus, it has a singleton Thread stage (”generate”) to generate syn-

thetic data, a single dynamic queue set (”data-set”), and an instanced Thread stage

consumer (”reduce-huge”). There is also a two element read-only buffer (”params”)

that specifies the total number of packets to generate and how many subqueues to

create, which are set to 25 and 6 respectively in this example. The bodies of the two

stages are described in more detail below in Section A.2.

A note about specifying stages in an application graph: in this test, each stage de-

fines a threadMain, which the setup code resolves via dynamic linking. In some tests,

the stages are linked statically and specified directly via function pointer instead.

A.1.1 C++ Setup

/*

* set-reduce-keyed.cpp --

*

* Procedural GRAMPS setup code for set-reduce-keyed

*/

#include <stdio.h>

#include <string.h>

#include <dlfcn.h>

#include "gramps.h"

GrThreadProgram

GetStageMain(const char *fileName) {
void *progHandle, *progSym;

if ((progHandle = dlopen(fileName, RTLD LAZY)) == NULL) {
printf("Unable to open %s: %s\n", fileName, dlerror());

return NULL;

}

if ((progSym = dlsym(progHandle, "threadMain")) == NULL) {
printf("Unable to find threadMain in %s: %s\n", fileName, dlerror());

dlclose(progHandle);

return NULL;

}

return (GrThreadProgram) progSym;

}

int

main(int argc, const char *argv[]) {

/* Create buffer with parameters */

GrBufferDesc bufDesc;

78 APPENDIX A. SAMPLE GRAMPS CODE

GrBufferId bufId;

int bufData[] = { 25, 6 }; /* numOutputs, numLanes */

snprintf(bufDesc.name, GR MAX NAME LEN, "params");

bufDesc.numBytes = sizeof bufData;

bufId = GrCreateBuffer(&bufDesc, bufData);

GrBufferBindDesc bufBind;

bufBind.grb = bufId;

bufBind.mode = GR BUFFER BIND RD;

/* Create queue set */

GrQueueDesc qDesc;

GrQueueId qId;

memset(&qDesc, 0, sizeof qDesc);

snprintf(qDesc.name, GR MAX NAME LEN, "data-set");

qDesc.numPackets = 40;

qDesc.packetByteWidth = 4;

qDesc.exclusive = true;

qId = GrCreateQueue(&qDesc);

/* Create stages */

GrStageDesc stageDesc[2];

GrStageId stageId[2];

memset(stageDesc, 0, sizeof stageDesc);

snprintf(stageDesc[0].name, GR MAX NAME LEN, "generate");

stageDesc[0].program = GetStageMain("./generate-keyed.gre.so");

stageDesc[0].type = GR STAGE ASSEMBLE;

stageId[0] = GrCreateStage(&stageDesc[0]);

GrBindQueues(stageId[0], GR QUEUE BIND OUTPUT, 1, &qId);

GrBindBuffers(stageId[0], 1, &bufBind);

snprintf(stageDesc[1].name, GR MAX NAME LEN, "reduce-huge");

stageDesc[1].program = GetStageMain("./reduce-huge-reserve.gre.so");

stageDesc[1].type = GR STAGE ASSEMBLE;

stageDesc[1].instanced = true;

stageId[1] = GrCreateStage(&stageDesc[1]);

GrBindQueues(stageId[1], GR QUEUE BIND INPUT, 1, &qId);

GrBindBuffers(stageId[1], 1, &bufBind);

/* Run the execution graph */

GrWaitId graphId;

graphId = GrSetRunnable(1, &stageId[0]);

GrWait(graphId);

/* Cleanup */

GrDestroyBuffer(bufId);

GrDestroyQueue(qId);

GrDestroyStage(stageId[0]);

GrDestroyStage(stageId[1]);

return 0;

}

A.1. APPLICATION GRAPH SETUP 79

A.1.2 Grampsh Setup

#!../grampsh/grampsh

#

set-reduce-keyed.cfg --

#

grampsh script for the set-reduce test. This version uses dynamic

subqueues and an instanced Thread stage.

###

Stages

#

numStages = 2

stage0.name = generate

stage0.program = generate-keyed.gre

stage0.type = thread

stage0.runnable = 1

stage0.numBufs = 1

stage0.numOutputs = 1

stage0.buf0.name = params

stage0.buf0.mode = read

stage0.output0.name = data-set

stage1.name = reduce-huge

stage1.program = reduce-huge-reserve.gre

stage1.type = thread

stage1.instanced = 1

stage1.numBufs = 1

stage1.numInputs = 1

stage1.buf0.name = params

stage1.buf0.mode = read

stage1.input0.name = data-set

###

Queues

#

data-set.numPackets = 40

data-set.packetSize = 4

data-set.numLanes = 0

data-set.exclusive = 1

###

Buffers

#

Note: The first int is the number of outputs and the second is the number

of queue set lanes to use.

params.numBytes = 8

params.contents = 25 6

80 APPENDIX A. SAMPLE GRAMPS CODE

Thread Stages
uint32 GrReserve(window, numPackets, subQueue);

uint32 GrReserveKey(window, numPackets, key);

uint32 GrCommit(window, numPackets, flags);

uint32 GrGetQueueKey(window);

Shader Stages
void GrPush(queue, subQueue, data[]);

void GrPushKey(queue, key, data[]);

uint32 GrGetInputKey(void);

All Stages
uint32 GrPrintf(format, ...);

void GrAssert(condition);

Table A.2: GRAMPS APIs for Thread and Shader stages

A.2 Stages

Table A.2 lists the GRAMPS intrinsics available to Thread and Shader stages: the

appropriate queue operations for each type, the ability to determine which subqueue

of a dynamic queue set is bound, and basic debugging functions.

The two Thread stages of set-reduce-keyed, listed below, each occupy their

own file: generate in generate-keyed.c and reduce-huge in reduce-huge-reserve.c. As

described above, the entry-point for each stage is named threadMain.

Generate is very simple: it iterates a counter from 0 to numV als − 1, makes

a packet whose sole contents are the counter value, and uses that value modulo

numLanes as the key to select the output subqueue. Reduce-huge is only slightly

more complex. Each instance issues a “huge” reservation (-1 packets) to a GRAMPS-

chosen subqueue. This reservation blocks until the entire input is available, at which

point the stage traverses that input verifying that the values are the ones that cor-

respond to the key. It infers the subqueue key from the data, but it could also use

GrGetQueueKey.

A.2. STAGES 81

A.2.1 Generate-Keyed

/*

* generate-keyed.c --

*

* Simple kernel that generates the requested number of ints and

* distributes them round-robin among the lanes of its output queue

* set. This version of the kernel explicitly creates a new subqueue

* according to its input parameters rather than assuming they were

* created statically.

*/

#include "grampsthread.h"

void

threadMain(GrEnv* env)

{
uint32 *params = (uint32 *) env->buffers[0].mem;

uint32 numVals, numLanes, ii;

GrAssert(env->buffers[0].numBytes / sizeof(uint32) >= 2);

numVals = params[0];

numLanes = params[1];

GrPrintf("Generate: Spreading %d values among %d lanes.\n", numVals, numLanes);

for (ii = 0; ii < numVals; ii++) {
uint32 lane;

lane = ii % numLanes;

GrReserveKey(&env->outputQueues[0], 1, lane);

*((uint32 *) env->outputQueues[0].mem) = ii;

GrCommit(&env->outputQueues[0], 1, GR RESERVE FLAG ANYSUBQUEUE);

}

GrPrintf("Generate: Complete\n");
}

A.2.2 Reduce-Huge-Reserve

/*

* reduce-huge-reserve.c --

*

* Simple kernel that buffers its input with a gigantic reservation,

* relying upon it to block and then return GR RESERVE SHORT when the

* input closes.

*/

#include "grampsthread.h"

void

threadMain(GrEnv* env)

{
uint32 *params = (uint32 *) env->buffers[0].mem;

GrQueueWin *input = &env->inputQueues[0];

82 APPENDIX A. SAMPLE GRAMPS CODE

uint32 numLanes, curLane;

GrAssert(env->buffers[0].numBytes / sizeof(uint32) >= 2);

numLanes = params[1];

for (curLane = 0; curLane < numLanes; curLane++) {
uint32 result, laneNo, numPackets, ii;

GrPrintf("Reduce: Reducing subqueue %d\n", curLane);

result = GrReserve(input, (uint32) -1, GR RESERVE FLAG ANYSUBQUEUE);

if (result == GR RESERVE NOMORE) {
continue;

}
numPackets = input->numBytes / sizeof(uint32);

/* Compute the expected subqueue number based on the first element. */

laneNo = ((uint32 *) input->mem)[0];

GrPrintf("Reduce: Subqueue %d has %d packets.\n", laneNo, numPackets);

for (ii = 0; ii < numPackets; ii++) {
uint32 expected = ii ∗ numLanes + laneNo;

uint32 actual = ((uint32 *) input->mem)[ii];

if (expected ! = actual) {
GrPrintf("Reduce: Queue[%d][%d] was %d when expecting %d!\n",

laneNo, ii, actual, expected);

GrAssert(expected == actual);

}
}

GrCommit(&env->inputQueues[0], numPackets, GR RESERVE FLAG ANYSUBQUEUE);

}
}

Bibliography

[1] AMD. Coming soon: The AMD Fusion Family of APUs. http://sites.amd.

com/us/fusion/APU/Pages/fusion.aspx.

[2] AMD. ATI Radeon HD 5000 Series Graphics Cards from AMD, 2010. http://

www.amd.com/us/products/desktop/graphics/ati-radeon-hd-5000/Pages/

ati-radeon-hd-5000.aspx.

[3] Nimar S. Arora, Robert D. Blumofe, and C. Greg Plaxton. Thread scheduling

for multiprogrammed multiprocessors. In Proc. of the 10th annual ACM Symp.

on Parallel Algorithms and Architectures, 1998.

[4] Louis Bavoil, Steven P. Callahan, Aaron Lefohn, Joao L. D. Comba, and Clau-

dio T. Silva. Multi-fragment effects on the GPU using the k-buffer. In Proceedings

of the 2007 symposium on Interactive 3D graphics and games, pages 97–104, New

York, NY, USA, 2007. ACM.

[5] David Blythe. The Direct3D 10 system. ACM Transactions on Graphics,

25(3):724–734, July 2006.

[6] Solomon Boulos, Dave Edwards, J. Dylan Lacewell, Joe Kniss, Jan Kautz, Peter

Shirley, and Ingo Wald. Packet-based Whitted and distribution ray tracing.

Proceedings of Graphics Interface 2007, pages 177–184, 2007.

[7] Alton Brown. The Chewy. Food Network. http://www.foodnetwork.com/

recipes/alton-brown/the-chewy-recipe/index.html.

83

http://sites.amd.com/us/fusion/APU/Pages/fusion.aspx
http://sites.amd.com/us/fusion/APU/Pages/fusion.aspx
http://www.amd.com/us/products/desktop/graphics/ati-radeon-hd-5000/Pages/ati-radeon-hd-5000.aspx
http://www.amd.com/us/products/desktop/graphics/ati-radeon-hd-5000/Pages/ati-radeon-hd-5000.aspx
http://www.amd.com/us/products/desktop/graphics/ati-radeon-hd-5000/Pages/ati-radeon-hd-5000.aspx
http://www.foodnetwork.com/recipes/alton-brown/the-chewy-recipe/index.html
http://www.foodnetwork.com/recipes/alton-brown/the-chewy-recipe/index.html

84 BIBLIOGRAPHY

[8] David Chase and Yossi Lev. Dynamic circular work-stealing deque. In Proc. of

the 17th annual ACM Symp. on Parallel Algorithms and Architectures, 2005.

[9] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer,

Sang-Ha Lee, and Kevin Skadron. Rodinia: A benchmark suite for heterogeneous

computing. In Proc. of the IEEE Intl. Symp. on Workload Characterization,

2009.

[10] Jiawen Chen, Michael I. Gordon, William Thies, Matthias Zwicker, Kari Pulli,

and Frédo Durand. A reconfigurable architecture for load-balanced rendering.

In Workshop on Graphics Hardware, pages 71–80, New York, NY, USA, 2005.

ACM.

[11] William J. Dally, Francois Labonte, Abhishek Das, Patrick Hanrahan, Jung-Ho

Ahn, Jayanth Gummaraju, Mattan Erez, Nuwan Jayasena, Ian Buck, Timothy J.

Knight, and Ujval J. Kapasi. Merrimac: Supercomputing with streams. In SC

’03: Proceedings of the 2003 ACM/IEEE conference on Supercomputing, page 35,

Washington, DC, USA, 2003. IEEE Computer Society.

[12] Abhishek Das, William J. Dally, and Peter Mattson. Compiling for stream pro-

cessing. In Proc. of the 15th Intl. Conf. on Parallel Architectures and Compilation

Techniques, 2006.

[13] Alejandro Duran, Julita Corbalán, and Eduard Ayguadé. Evaluation of OpenMP

task scheduling strategies. In 4th Intl. Workshop in OpenMP, 2008.

[14] Tim Foley and Jeremy Sugerman. KD-tree acceleration structures for a GPU

raytracer. In Workshop on Graphics Hardware, pages 15–22, New York, NY,

USA, 2005. ACM.

[15] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implementation

of the Cilk-5 multithreaded language. In Proc. of the ACM SIGPLAN conf. on

Programming Language Design and Implementation, 1998.

BIBLIOGRAPHY 85

[16] Michael I. Gordon, William Thies, Michal Karczmarek, Jasper Lin, Ali S. Meli,

Andrew A. Lamb, Chris Leger, Jeremy Wong, Henry Hoffmann, David Maze, and

Saman Amarasinghe. A stream compiler for communication-exposed architec-

tures. In Proc. of the 10th Intl. Conf. on Architectural Support for Programming

Languages and Operating Systems, 2002.

[17] Roy Hall and Donald Greenberg. A testbed for realistic image synthesis. IEEE

Comput. Graph. Appl., 3(8):10–20, 1983.

[18] Jon Hasselgren and Thomas Akenine-Möller. PCU: the programmable culling

unit. ACM Transactions on Graphics, 26(3):92, 2007.

[19] W. Daniel Hillis and Guy L. Steele, Jr. Data parallel algorithms. Communica-

tions of the ACM, 29(12):1170–1183, 1986.

[20] Daniel Horn, Jeremy Sugerman, Mike Houston, and Pat Hanrahan. Interactive

k-D Tree GPU Raytracing. In Proceedings of the 2007 symposium on Interactive

3D graphics and games, New York, NY, USA, 2007. ACM.

[21] Intel. TBB http://www.threadingbuildingblocks.org.

[22] Brucek Khailany, William J. Dally, Ujval J. Kapasi, Peter Mattson, Jinyung

Namkoong, John D. Owens, Brian Towles, Andrew Chang, and Scott Rixner.

Imagine: Media Processing with Streams. IEEE Micro, 21:35–46, 2001.

[23] Khronos Group. OpenCL 1.0 specification, 2009.

[24] Manjunath Kudlur and Scott Mahlke. Orchestrating the execution of stream

programs on multicore platforms. In Proc. of the ACM SIGPLAN conf. on

Programming language design and implementation, 2008.

[25] Edward Ashford Lee and David G. Messerschmitt. Static scheduling of syn-

chronous data flow programs for digital signal processing. IEEE Trans. Comput.,

36(1), 1987.

http://www.threadingbuildingblocks.org

86 BIBLIOGRAPHY

[26] John M. Mellor-Crummey and Michael L. Scott. Algorithms for scalable syn-

chronization on shared-memory multiprocessors. ACM Trans. Comput. Syst.,

9(1), 1991.

[27] MIPS Technologies Inc. MIPS64 architecture, 2005. http://mips.com/

products/architectures/mips64/.

[28] Mozilla. Gecko plugin API reference (NPAPI). https://developer.mozilla.

org/en/Gecko_Plugin_API_Reference.

[29] David R. Musser and Atul Saini. The STL Tutorial and Reference Guide: C++

Programming with the Standard Template Library. Addison Wesley Longman

Publishing Co., Inc., Redwood City, CA, USA, 1995.

[30] NVIDIA. CUDA SDK Code Samples http://developer.nvidia.com/object/

cuda_sdk_samples.html.

[31] NVIDIA. CUDA 3.0 reference manual, 2010.

[32] NVIDIA. NVIDIA GF100 World’s Fastest GPU Delivering Great Gaming Perfor-

mance with True Geometric Realism, 2010. http://www.nvidia.com/object/

IO_89569.html.

[33] Marc Olano and Trey Greer. Triangle scan conversion using 2D ho-

mogeneous coordinates. In HWWS ’97: Proceedings of the ACM SIG-

GRAPH/EUROGRAPHICS workshop on Graphics hardware, pages 89–95.

ACM, 1997.

[34] John D. Owens, Brucek Khailany, Brian Towles, and William J. Dally. Com-

paring Reyes and OpenGL on a stream architecture. In Workshop on Graphics

Hardware, pages 47–56, September 2002.

[35] D. Pham, S. Asano, M. Bolliger, MN Day, HP Hofstee, C. Johns, J. Kahle,

A. Kameyama, J. Keaty, Y. Masubuchi, et al. The design and implementation

of a first-generation CELL processor. ISSCC. 2005 IEEE International, pages

184–186, 2005.

http://mips.com/ products/architectures/mips64/
http://mips.com/ products/architectures/mips64/
https://developer.mozilla.org/en/Gecko_Plugin_API_Reference
https://developer.mozilla.org/en/Gecko_Plugin_API_Reference
http://developer.nvidia.com/object/cuda_sdk_samples.html
http://developer.nvidia.com/object/cuda_sdk_samples.html
http://www.nvidia.com/object/IO_89569.html
http://www.nvidia.com/object/IO_89569.html

BIBLIOGRAPHY 87

[36] Timothy J. Purcell. Ray Tracing on a Stream Processor. PhD thesis, Stanford

University, 2004.

[37] Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary Bradski, and

Christos Kozyrakis. Evaluating mapreduce for multi-core and multiprocessor

systems. In Proc. of the 13th Intl. Symp. on High-Performance Computer Ar-

chitecture, 2007.

[38] John R. Rose and Guy L. Steele, Jr. C*: An extended C language for data

parallel programming. In Proceedings of the Second International Conference on

Supercomputing, volume II, pages 2–16. International Supercomputing Institute,

1987.

[39] Mark Segal and Kurt Akeley. The OpenGL graphics system: A spec-

ification, 2010. http://www.opengl.org/registry/doc/glspec40.core.

20100311.pdf.

[40] Larry Seiler, Doug Carmean, Eric Sprangle, Tom Forsyth, Michael Abrash,

Pradeep Dubey, Stephen Junkins, Adam Lake, Jeremy Sugerman, Robert Cavin,

Roger Espasa, Ed Grochowski, Toni Juan, and Pat Hanrahan. Larrabee: A

Many-Core x86 Architecture for Visual Computing. ACM Transactions on

Graphics, 27(3), 2008.

[41] Jeremy Sugerman, Kayvon Fatahalian, Solomon Boulos, Kurt Akeley, and Pat

Hanrahan. GRAMPS: A programming model for graphics pipelines. ACM Trans.

Graph., 28(1), 2009.

[42] Jeremy Sugerman, David Lo, Richard Yoo, Daniel Sanchez, and Christos

Kozyrakis. Comparing parallel programming models using GRAMPS. Under

submission, Aug 2010.

[43] William Thies, Michal Karczmarek, and Saman Amarasinghe. StreamIt: A lan-

guage for streaming applications. In Proc. of the 10th Intl. Conf. on Compiler

Construction, 2001.

http://www.opengl.org/registry/doc/glspec40.core.20100311.pdf
http://www.opengl.org/registry/doc/glspec40.core.20100311.pdf

88 BIBLIOGRAPHY

[44] Elliot Waingold, Michael Taylor, Devabhaktuni Srikrishna, Vivek Sarkar, Wal-

ter Lee, Victor Lee, Jang Kim, Matthew Frank, Peter Finch, Rajeev Barua,

Jonathan Babb, Saman Amarasinghe, and Anant Agarwal. Baring it all to soft-

ware: Raw machines. IEEE Computer, 30(9):86 –93, 1997.

[45] Wikipedia. SQL. http://en.wikipedia.org/wiki/SQL.

[46] Kun Zhou, Qiming Hou, Zhong Ren, Minmin Gong, Xin Sun, and Baining Guo.

RenderAnts: interactive Reyes rendering on GPUs. In SIGGRAPH Asia ’09:

ACM SIGGRAPH Asia 2009 papers, pages 1–11, New York, NY, USA, 2009.

ACM.

http://en.wikipedia.org/wiki/SQL

	Abstract
	Acknowledgements
	1 Introduction
	2 Parallel Programming Models
	2.1 Domain Specific Programming Models
	2.1.1 Real-Time Graphics Pipelines

	2.2 General Purpose Programming Models
	2.2.1 Task-Stealing
	2.2.2 Breadth-First
	2.2.3 Static

	2.3 Conclusion

	3 The GRAMPS Programming Model
	3.1 GRAMPS Design
	3.2 A GRAMPS Example
	3.3 Execution Graphs
	3.4 Queues
	3.4.1 Packets
	3.4.2 Queue Sets

	3.5 Stages
	3.5.1 Thread Stages
	3.5.2 Fixed-Function Stages
	3.5.3 Shader Stages

	3.6 Common Design Idioms

	4 Future Rendering Architectures
	4.1 Introduction
	4.2 Background and Related Work
	4.2.1 GPUs
	4.2.2 Graphics on Stream Processors

	4.3 Application Scope
	4.3.1 Direct3D
	4.3.2 Ray Tracer
	4.3.3 Extended Direct3D

	4.4 Multi-platform
	4.4.1 Hardware Simulator
	4.4.2 GRAMPS Runtimes

	4.5 Performance
	4.5.1 Scheduling
	4.5.2 Evaluation

	4.6 Tunability
	4.6.1 Diagnosis
	4.6.2 Optimization

	4.7 Conclusion

	5 Current General-Purpose Multi-cores
	5.1 Introduction
	5.2 Application Scope
	5.3 Multi-platform (Implementation)
	5.3.1 Data Queues
	5.3.2 Task Queues
	5.3.3 Termination

	5.4 Performance
	5.4.1 Scheduling
	5.4.2 Evaluation

	5.5 Tunability
	5.6 Conclusion

	6 Comparing Schedulers
	6.1 Introduction
	6.2 Representing other Programming Models with GRAMPS
	6.3 Evaluation
	6.3.1 Execution Time
	6.3.2 Footprint
	6.3.3 Static

	6.4 Conclusions

	7 Discussion
	7.1 Contributions and Take-aways
	7.2 Final Thoughts

	A Sample GRAMPS Code
	A.1 Application Graph Setup
	A.1.1 C++ Setup
	A.1.2 Grampsh Setup

	A.2 Stages
	A.2.1 Generate-Keyed
	A.2.2 Reduce-Huge-Reserve

	Bibliography

